Conduction in solids intro
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
WHAT IS IT?
This model supports a drawing style interface for "sketching" up representations of new systems to explore related to gas behavior and gas particles. This model is part of the "Connected Chemistry" curriculum http://ccl.northwestern.edu/curriculum/ConnectedChemistry/ which explores the behavior of gases.
Most of the models in the Connected Chemistry curriculum use the same basic rules for simulating the behavior of gases. Each model highlights different features of how gas behavior is related to gas particle behavior.
In all of the models, gas particles are assumed to move and to collide, both with each other and with objects such as walls.
In this model, particles can be added, color coded, and sped up or slowed down, by drawing with the mouse cursor in the WORLD & VIEW. Also, additional types of removable and replaceable walls can be added to the WORLD.
This model enables students to draw a model of a real world system and then test that model. A wide range of real world systems can be modeled with this simple interface (e.g. diffusion of perfume from an uncapped container, hot gas mixed with a cold gas, mixtures of gases).
HOW IT WORKS
The particles are modeled as hard balls with no internal energy except that which is due to their motion. Collisions between particles are elastic. Collisions with the wall are not.
The exact way two particles collide is as follows:
- A particle moves in a straight line without changing its speed, unless it collides with another particle or bounces off the wall.
- Two particles "collide" if they find themselves on the same patch. In this model, two turtles are aimed so that they will collide at the origin.
- An angle of collision for the particles is chosen, as if they were two solid balls that hit, and this angle describes the direction of the line connecting their centers.
- The particles exchange momentum and energy only along this line, conforming to the conservation of momentum and energy for elastic collisions.
- Each particle is assigned its new speed, heading and energy.
As the walls of the box are heated, the sides of the walls will change color from a deep red (cool) to a bright red, to pink to a pale pink white (hot). The walls contain a constant heat value throughout the simulation.
The exact way particles gain energy from the walls of the box is as follows:
- Particles check their state of energy (kinetic).
- They hit or bounce off the wall.
- They find wall energy and set their new energy to be the average of their old kinetic energy and the wall energy.
- They change their speed and direction after the wall hit.
HOW TO USE IT
Buttons: SETUP - sets up the initial conditions set on the sliders. GO/STOP - runs and stops the model. MOUSE INTERACTION - when this is set to "none - let the particles interact" the particles will move and interact with each other and the surroundings. When set to any other value you can then click in the WORLD & VIEW to paint, erase, color, or add various objects and properties.
Sliders: INITIAL-#-PARTICLES - sets the number of gas particles in the box when the simulation starts. INITIAL-GAS-TEMPERATURE sets the initial temperature of the gas.
Switches: SHOW-WALL-HITS? turn visualization of when particles hits the walls (as flashes) on or off
Choosers: VISUALIZE-SPEED? allows you to visualize particle speeds. For example, selecting "arrows", creates a representation of each particle velocity using a scalar arrow. Selecting "shades" creates representation of each particle speed using a brighter (faster) or darker (slower) shade of the particle's color.
MOUSE-INTERACTION sets the type interaction the user can do with the mouse in the WORLD & VIEW. Possible settings include: "none - let the particles interact" - particles move about "draw basic wall" - adds a gray wall under the mouse cursor "draw red removable wall" - adds a red wall under the mouse cursor which can be alternatively removed and replaced (like a valve) using the REMOVE/REPLACE RED WALL. "draw green removable wall" - adds a green wall under the mouse cursor which can be alternatively removed and replaced (like a valve) using the REMOVE/REPLACE GREEN WALL. "big eraser" - erases all objects (except the yellow box boundary walls) under the mouse cursor. "slow down particles" - increase the current speed of the particles by 10%. "speed up particles" - reduces the current speed of the particles by 10%. "paint particles green" - recolors the particles under the mouse cursor green (other settings include orange and purple) "add green particles" - adds a couple of new particles under the mouse cursor (other settings include orange and purple)
Plots:
- 1: TEMPERATURE OF GASES VS. TIME: plots the temperature of the different gases in the model, as indicated by their color (orange particles, green particles, and purple particles)
THINGS TO NOTICE
The mouse interaction can be used while the model is running as well as when it is stopped.
THINGS TO TRY
Create a model of how odors move throughout a room. Why do some people smell the odor before others? Does the layout of furniture, large objects, and walls in the room effect the movement of the odor? How about the temperature of the air in the room?
Create a model of diffusion of a perfume from a closed container. How would you represent the different gases (the perfume and the surrounding air)? What shape will the container be? How will you model a removable cap or lid?
Create a model of room filled with cold air and a different room filled with warm air. How will represent these different rooms of air? What could you add to show what happens when they mix?
Create a model of heat transfer that shows what happens to the energy of one very fast moving gas particle when it hits a bunch of very slow moving gas particles. What does this show happening to the energy of the initial gas particles?
RELATED MODELS
See GasLab Models See other Connected Chemistry models.
CREDITS AND REFERENCES
This model is part of the Connected Chemistry curriculum. See http://ccl.northwestern.edu/curriculum/chemistry/.
We would like to thank Sharona Levy and Michael Novak for their substantial contributions to this model.
HOW TO CITE
If you mention this model or the NetLogo software in a publication, we ask that you include the citations below.
For the model itself:
- Wilensky, U. (2006). NetLogo Connected Chemistry 8 Gas Particle Sandbox model. http://ccl.northwestern.edu/netlogo/models/ConnectedChemistry8GasParticleSandbox. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
Please cite the NetLogo software as:
- Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
To cite the Connected Chemistry curriculum as a whole, please use:
- Wilensky, U., Levy, S. T., & Novak, M. (2004). Connected Chemistry curriculum. http://ccl.northwestern.edu/curriculum/chemistry/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
COPYRIGHT AND LICENSE
Copyright 2006 Uri Wilensky.
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu.
Comments and Questions
globals [ tick-advance-amount ; how much we advance the tick counter this time through max-tick-advance-amount ; the largest tick-advance-amount is allowed to be init-avg-speed init-avg-energy ; initial averages avg-speed avg-energy ; current average avg-temp-type-1 avg-temp-type-2 avg-temp-type-3 avg-energy-gray particle-size toggle-red-state toggle-green-state min-particle-energy max-particle-energy gas-particles-to-add initial-gas-temperature #-3-wall-particles #-2-wall-particles #-1-wall-particles #-3-wall-total-te #-2-wall-total-te #-1-wall-total-te init-temp#1 init-temp#2 init-temp#3 left-piece-label middle-piece-label right-piece-label mouse-interaction kelvin-celcius-offset a b left-solid-length left-solid-width middle-solid-length middle-solid-width right-solid-length right-solid-width ] breed [ gas-particles particle ] breed [ walls wall ] breed [ flashes flash ] breed [ erasers eraser ] breed [ arrowheads arrowhead ] breed [ boundaries boundary ] erasers-own [ pressure? ] flashes-own [ birthday ] gas-particles-own [ speed mass energy ; gas-particles info last-collision color-type ] walls-own [ energy valve-1? valve-2? pressure? my-pxcor my-pycor my-heading distance-advance color-type particle-type init-yoffset ] to setup clear-all reset-ticks set particle-size 1.0 set max-tick-advance-amount 0.02 set #-3-wall-particles 0 set #-2-wall-particles 0 set #-1-wall-particles 0 set kelvin-celcius-offset 273 set gas-particles-to-add 2 set mouse-interaction "none" set a 200 set b .75 ; set initial-gas-temperature 500 set left-solid-length 8 set left-solid-width 8 set middle-solid-length 2 set middle-solid-width 8 set right-solid-length 8 set right-solid-width 8 set init-temp#1 left.start.temp ;+ kelvin-celcius-offset set init-temp#2 middle.start.temp ;+ kelvin-celcius-offset set init-temp#3 right.start.temp; + kelvin-celcius-offset set-default-shape flashes "square2" set-default-shape walls "circle" set-default-shape erasers "eraser" set-default-shape arrowheads "default" set min-particle-energy 100 set max-particle-energy 500 ;(.5 ) * ( max-dist-in-tick-advance-amount / max-tick-advance-amount ) ^ 2 create-erasers 1 [ set hidden? true set size 1.2 set color [255 255 255 100] ] make-box ask walls [transfer-energy-mytype] ask walls [recolorshade-walls] ask gas-particles [ apply-speed-visualization ] set init-avg-speed avg-speed set init-avg-energy avg-energy update-variables do-plots end to go if end-simulation? [ stop ] ask walls [transfer-energy] ask walls [calculate-distance-advance-amount] ask walls [apply-vibration-motion-visualization] ask gas-particles [ apply-speed-visualization ] ask walls [recolorshade-walls] update-variables do-plots calculate-tick-advance-amount tick-advance tick-advance-amount display end to calculate-distance-advance-amount set distance-advance (distance-advance + (tick-advance-amount * (energy) * 9 )) end to-report end-simulation? let value-to-report false let auto-stop-simulation? "" if auto-stop-simulation? = "at time = 5" and ticks >= 5 [set value-to-report true] if auto-stop-simulation? = "at time = 10" and ticks >= 10 [set value-to-report true] if auto-stop-simulation? = "at time = 15" and ticks >= 15 [set value-to-report true] if auto-stop-simulation? = "at time = 20" and ticks >= 20 [set value-to-report true] ; set value-to-report true report value-to-report end to update-variables if any? gas-particles [ set avg-speed mean [ speed ] of gas-particles set avg-energy( mean [ energy ] of gas-particles - kelvin-celcius-offset) ] let wall-particles-type-1 walls with [particle-type = 1] let wall-particles-type-2 walls with [particle-type = 2] let wall-particles-type-3 walls with [particle-type = 3] ;show count gas-particles-type-1 ifelse any? wall-particles-type-1 [ set #-1-wall-particles count wall-particles-type-1 set avg-temp-type-1 ( (mean [ energy ] of wall-particles-type-1) - kelvin-celcius-offset) set #-1-wall-total-te ((mean [ energy ] of wall-particles-type-1) * #-1-wall-particles ) set left-piece-label avg-temp-type-1 ; show "yes" ] [set left-piece-label "N/A"] ifelse any? wall-particles-type-2 [ set #-2-wall-particles count wall-particles-type-2 set avg-temp-type-2 ( (mean [ energy ] of wall-particles-type-2) - kelvin-celcius-offset) set #-2-wall-total-te ((mean [ energy ] of wall-particles-type-2) * #-2-wall-particles ) set middle-piece-label avg-temp-type-2 ; show "yes" ] [set right-piece-label "N/A"] ifelse any? wall-particles-type-3 [ set #-3-wall-particles count wall-particles-type-3 set avg-temp-type-3 ( (mean [ energy ] of wall-particles-type-3) - kelvin-celcius-offset) set #-3-wall-total-te ((mean [ energy ] of wall-particles-type-3) * #-3-wall-particles ) set right-piece-label avg-temp-type-3 ; show "yes" ] [set right-piece-label "N/A"] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAS MOLECULES MOVEMENT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to bounce ; gas-particles procedure ; get the coordinates of the patch we'll be on if we go forward 1 let bounce-patch nobody let bounce-patches nobody let hit-angle 0 let this-patch patch-here let new-px 0 let new-py 0 let visible-wall nobody let particle-energy energy set bounce-patch min-one-of walls in-cone ((sqrt (2)) / 2) 180 with [ myself != this-patch ] [ distance myself ] if bounce-patch != nobody [ let wall-energy [energy] of bounce-patch let energy-difference (particle-energy - wall-energy) set new-px [ pxcor ] of bounce-patch set new-py [ pycor ] of bounce-patch set visible-wall walls-on bounce-patch if any? visible-wall with [ not hidden? ] [ set hit-angle towards bounce-patch ifelse (hit-angle <= 135 and hit-angle >= 45) or (hit-angle <= 315 and hit-angle >= 225) [ set heading (- heading) ][ set heading (180 - heading) ] set energy (energy - (energy-difference / 4)) set speed speed-from-energy ask bounce-patch [set energy (energy + (energy-difference / 4)) ] if true [; show-wall-hits? [ ask patch new-px new-py [ sprout 1 [ set breed flashes set color gray - 2 set birthday ticks ] ] ] ] ] end to rewind-to-bounce ; gas-particles procedure ; attempts to deal with particle penetration by rewinding the particle path back to a point ; where it is about to hit a wall ; the particle path is reversed 49% of the previous tick-advance-amount it made, ; then particle collision with the wall is detected again. ; and the particle bounces off the wall using the remaining 51% of the tick-advance-amount. ; this use of slightly more of the tick-advance-amount for forward motion off the wall, helps ; insure the particle doesn't get stuck inside the wall on the bounce. let bounce-patch nobody let bounce-patches nobody let hit-angle 0 let this-patch nobody let new-px 0 let new-py 0 let visible-wall nobody bk (speed) * tick-advance-amount * .49 set this-patch patch-here set bounce-patch min-one-of walls in-cone ((sqrt (2)) / 2) 180 with [ self != this-patch ] [ distance myself ] if bounce-patch != nobody [ set new-px [pxcor] of bounce-patch set new-py [pycor] of bounce-patch set visible-wall walls-on bounce-patch if any? visible-wall with [not hidden?] [ set hit-angle towards bounce-patch ifelse (hit-angle <= 135 and hit-angle >= 45) or (hit-angle <= 315 and hit-angle >= 225) [ set heading (- heading) ][ set heading (180 - heading) ] if true [;[show-wall-hits? [ ask patch new-px new-py [ sprout 1 [ set breed flashes set color gray - 2 set birthday ticks ] ] ] ] ] fd (speed) * tick-advance-amount * .51 end to move ; gas-particles procedure if patch-ahead (speed * tick-advance-amount) != patch-here [ set last-collision nobody ] jump (speed * tick-advance-amount) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAS MOLECULES COLLISIONS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;from GasLab to calculate-tick-advance-amount set tick-advance-amount max-tick-advance-amount end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; mouse interaction procedures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to mouse-action let snap-xcor 0 let snap-ycor 0 let orig-xcor 0 let orig-ycor 0 let eraser-window-walls nobody let eraser-window-gas-particles nobody ifelse mouse-down? [ set orig-xcor mouse-xcor set orig-ycor mouse-ycor set snap-xcor round orig-xcor set snap-ycor round orig-ycor ask patches with [ pxcor = snap-xcor and pycor = snap-ycor ] [ set eraser-window-walls walls-here ; show eraser-window-walls set eraser-window-gas-particles gas-particles-here if mouse-interaction = "speed up gas-particles" [ ask erasers [ set hidden? false set shape "spray paint" setxy orig-xcor orig-ycor ] ask eraser-window-gas-particles [ set energy (energy * 1.1) set energy limited-particle-energy set speed speed-from-energy ; apply-vibration-color-visualization ] ask eraser-window-walls [ set energy (energy * 1.1) set energy limited-particle-energy ; apply-vibration-color-visualization ] ] if mouse-interaction = "slow down gas-particles" [ ask erasers [ set hidden? false set shape "spray paint" setxy orig-xcor orig-ycor ] ask eraser-window-gas-particles [ set energy (energy / 1.1) set energy limited-particle-energy set speed speed-from-energy apply-speed-visualization ] ask eraser-window-walls [ set energy (energy / 1.1) set energy limited-particle-energy ; apply-vibration-color-visualization ] ] ] ask gas-particles with [ any? walls-here ] [ remove-from-walls ] ; deal with any walls drawn on top of gas-particles ][ ask erasers [ set hidden? true ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; thermal energy transfer ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to transfer-energy let neighboring-walls walls-on neighbors4 let my-energy energy let total-energy-from-neighbors 0 if any? neighboring-walls [ ask neighboring-walls [ let energy-from-me (((energy) * (0.25))) set energy (energy - energy-from-me) set total-energy-from-neighbors total-energy-from-neighbors + energy-from-me ] set energy energy + total-energy-from-neighbors ] end to transfer-energy-mytype let my-type particle-type let neighboring-walls-all walls-on neighbors4 let neighboring-walls neighboring-walls-all with [particle-type = my-type] let my-energy energy let total-energy-from-neighbors 0 if any? neighboring-walls [ ask neighboring-walls [ let energy-from-me (((energy) * (0.25))) set energy (energy - energy-from-me) set total-energy-from-neighbors total-energy-from-neighbors + energy-from-me ] set energy energy + total-energy-from-neighbors ] end to check-slide-up if particle-type = 1 [set ycor slide-left-solid-up + init-yoffset] if particle-type = 2 [set ycor slide-middle-solid-up + init-yoffset] if particle-type = 3 [set ycor slide-right-solid-up + init-yoffset] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; particle speed and flash visualization procedures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to apply-vibration-motion-visualization set xcor my-pxcor check-slide-up ; set my-heading my-heading + (energy / 100) * (random-float 5 - random-float 5) ; (energy / 100) - random-float (energy / 100) ; set heading my-heading let displacement (0.05 * ((energy / a) ^ b) * sin (distance-advance) ) fd displacement end to apply-speed-visualization recolorshade-gas-particles ; if visualize-speed? = "arrows" [ scale-arrowheads ] ; if visualize-speed? = "different shades" [ recolorshade-gas-particles ] ; if visualize-speed? = "none" [ recolornone ] end to color-particle-and-link let this-link my-out-links let this-color-type color-type set color this-color-type ask this-link [ set color this-color-type ] end to scale-arrowheads let this-xcor xcor let this-ycor ycor let this-speed speed let this-heading heading let this-arrowhead out-link-neighbors let this-link my-out-links ask this-link [ set hidden? false ] ask this-arrowhead [ set xcor this-xcor set ycor this-ycor set heading this-heading fd .5 + this-speed / 3 ] end to-report my-color-type let this-color-type color-type report this-color-type end to recolorshade-gas-particles let this-link my-out-links let this-arrowhead out-link-neighbors let local-color-type my-color-type let energy-difference (energy) let r-value ((4.9) * (1 - 0.999 ^ (energy))) let this-color ((my-color-type + 4.99) - r-value) set color this-color ask this-link [ set color this-color ] ask this-arrowhead [ set color this-color ] end to recolornone let this-link my-out-links let this-arrowhead out-link-neighbors let this-color color-type set color color-type ask this-link [set color this-color] ask this-arrowhead [ set color this-color ] end to recolorshade-walls let this-link my-out-links let this-arrowhead out-link-neighbors let local-color-type my-color-type let energy-difference (energy) let r-value ((8.9) * (1 - 0.999 ^ (energy))) let this-color ((my-color-type + 4.99) - r-value) set color this-color ask this-link [ set color this-color ] ask this-arrowhead [ set color this-color ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; initialization procedures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to make-box let vertical-line min-pycor let vertical-line-xcor 0.5 let vertical-line-offset 8 create-boundaries 1 [ set xcor (vertical-line-xcor) set shape "new-line" set color [255 255 255 120] set size 17 ] create-boundaries 1 [ set xcor (vertical-line-xcor + left-solid-width) set shape "new-line" set color [255 255 255 120] set size 17 ] create-boundaries 1 [ set xcor (vertical-line-xcor + left-solid-width + middle-solid-width) set shape "new-line" set color [255 255 255 120] set size 17 ] create-boundaries 1 [ set xcor (vertical-line-xcor + left-solid-width + middle-solid-width + right-solid-width) set shape "new-line" set color [255 255 255 120] set size 17 ] ask patches with [ ((pycor >= (min-pycor + slide-left-solid-up)) and (pycor < (min-pycor + slide-left-solid-up + left-solid-length )) ) and (pxcor > min-pxcor ) and (pxcor <= (left-solid-width)) ] [ sprout 1 [set breed walls set color-type red set size 1.0 set particle-type 1 set shape "rounded-square" initialize-this-wall set init-yoffset( pycor - slide-left-solid-up)] ] ask patches with [ ((pycor >= (min-pycor + slide-middle-solid-up )) and (pycor < (min-pycor + slide-middle-solid-up + middle-solid-length )) ) and (pxcor > (min-pxcor + left-solid-width ) and (pxcor <= (min-pxcor + left-solid-width + middle-solid-width))) ] [ sprout 1 [set breed walls set color-type red set particle-type 2 set size 1.0 set shape "rounded-square" initialize-this-wall set init-yoffset( pycor - slide-middle-solid-up) ] ] ask patches with [ ((pycor >= (min-pycor + slide-right-solid-up )) and (pycor < (min-pycor + slide-right-solid-up + right-solid-length )) ) and (pxcor > (min-pxcor + left-solid-width + middle-solid-width)) and (pxcor <= (min-pxcor + middle-solid-width + left-solid-width + right-solid-width)) ] [ sprout 1 [set breed walls set color-type red set size 1.0 set particle-type 3 set shape "rounded-square" initialize-this-wall set init-yoffset( pycor - slide-right-solid-up)] ] end to initialize-this-wall set valve-1? false set valve-2? false set pressure? false if particle-type = 1 [set energy left.start.temp + kelvin-celcius-offset] if particle-type = 2 [set energy middle.start.temp + kelvin-celcius-offset] if particle-type = 3 [set energy right.start.temp + kelvin-celcius-offset] set my-pxcor pxcor set my-pycor pycor set my-heading random 360 set distance-advance 0 end to setup-gas-particles ; gas-particles procedure set shape "circle" ;set size particle-size set energy initial-gas-temperature set color-type 5 set color color-type set mass (10) ; atomic mass hatch 1 [ set breed arrowheads set hidden? true create-link-from myself [ tie ] ] set speed speed-from-energy set last-collision nobody end ; Place gas-particles at random, but they must not be placed on top of wall atoms. ; This procedure takes into account the fact that wall molecules could have two possible arrangements, ; i.e. high-surface area ot low-surface area. to random-position ;; gas-particles procedure let open-patches nobody let open-patch nobody set open-patches patches with [not any? turtles-here and pxcor != max-pxcor and pxcor != min-pxcor and pycor != min-pycor and pycor != max-pycor] set open-patch one-of open-patches ; Reuven added the following "if" so that we can get through setup without a runtime error. if open-patch = nobody [ user-message "No open patches found. Exiting." stop ] setxy ([ pxcor ] of open-patch) ([ pycor ] of open-patch) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; wall penetration error handling procedure ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; if gas-particles actually end up within the wall to remove-from-walls let this-wall walls-here with [ not hidden? ] if count this-wall != 0 [ let available-patches patches with [ not any? walls-here ] let closest-patch nobody if (any? available-patches) [ set closest-patch min-one-of available-patches [ distance myself ] set heading towards closest-patch setxy ([ pxcor ] of closest-patch) ([ pycor ] of closest-patch) ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GRAPHS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;REPORTERS;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to-report speed-from-energy report sqrt (2 * energy / mass) end to-report energy-from-speed report (mass * speed * speed / 2) end to-report limited-particle-energy let limited-energy energy if limited-energy > max-particle-energy [ set limited-energy max-particle-energy ] if limited-energy < min-particle-energy [ set limited-energy min-particle-energy ] report limited-energy end to-report vibration-displacement end to do-plots set-current-plot "Temperature of solids" if #-1-wall-particles > 0 [ set-current-plot-pen "left" plotxy ticks avg-temp-type-1 ] if #-2-wall-particles > 0 [ set-current-plot-pen "middle" plotxy ticks avg-temp-type-2 ] if #-3-wall-particles > 0 [ set-current-plot-pen "right" plotxy ticks avg-temp-type-3 ] end ; Copyright 2006 Uri Wilensky. ; See Info tab for full copyright and license.
There are 2 versions of this model.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
Conduction in solids intro.png | preview | Preview for 'Conduction in solids intro' | over 5 years ago, by Michael Novak | Download |
This model does not have any ancestors.
This model does not have any descendants.