BABSTER
Model was written in NetLogo 5.2.0
•
Viewed 570 times
•
Downloaded 41 times
•
Run 0 times
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
Comments and Questions
Please start the discussion about this model!
(You'll first need to log in.)
Click to Run Model
; This allows Netlogo to use the Network and GIS extensions. These extensions must be in the right folder ; with the Netlogo app. They should be in the Netlogo/extensions folder. extensions [nw gis] ;Here are the global variables we will use in the model globals [ testname ;Holds the name of the test to create an appropriate file simulation ;With this variable the model keeps track of what simulation rep it is running during verification and general experiments average-cluster-coefficient ; This variable holds the cluster coefficient resulting in the world after the network is finished. largest-centrality-group ; this is just to check that the centrality procedure is working right total-population ;Total people in the world average-population ;People per population center in the world discount-rate ;Sets the discount rate for all the projects' finances taxes-insurance ;A combination of expected taxes and insurance and is used in the capital recovery factor (CRF) ;The capital recovery factor for solar, biomass, hydro, and transmission projects ;are different because of the expected lifetime of each infrastructure CRFsolar CRFbatteries CRFbiomass CRFhydro CRFtrans pl ; This is the fuel price levelizer, a unit needed for CRF ;Financial costs for some of the technologies overall-lcoe ;This is a total levelized cost of electricity for the world ;Different life spans of the capital investments solar-lifespan battery-lifespan biomass-lifespan hydro-lifespan transmission-lifespan darks-list ; Holds a list of all the darks (unelectrified populations) projects ; Agentset of all populations that still need electricity supply either partially or fully. sockets ; Agentset available for others to connect to (including power-plants) because they ; are now part of a secondary network project-patch ; Holds the patch identified by the observer as the next site for development expansion-node ; Population that is going to be connected or receive a project next %-unelectrified ;; People remaining with no access to electricity ;The observer uses this variable to determine if his preference is for grid extension "ge", ;or decentralized generation "dg" electrification-method total-plant-investment ;; How much has been spent on generation equipment total-transmission-investment ;; How much has been spent on transmission lines initial-population ; An agent that will be the first population to get connected. This is used for the ;Largest-Population preference so the model can keep track of who is the population ;that is the largest and is to be connected first. total-generation ;; The total generation capacity of all the power plants created area-of-patches hours-of-sun ;; Percent of total kms of line of each grade %-33kv %-138kv %-230kv %-345kv %-500kv %-right-of-way-area ;; % of area needed for right of way of transmission lines ;; These variables hold the total installed capacity of each technology solar-installed-capacity biomass-installed-capacity hydro-installed-capacity ;; These variables hold the fuel portfolio with the percent generation available according ;; to each technology %-solar-gen %-biomass-gen %-hydro-gen ;; These variables hold the percentage of the total potential of each technology that has ;; been installed. Or in other words, the percent used of the total available of each ;; technology %-of-solar-used %-of-biomass-used %-of-hydro-used total-economic-inflows ; The total yearly money flow created within communities due to renewable projects job-years ; Total job years created due to renewable energy projects ; GIS datasets loaded countys-dataset districts-dataset clans-dataset hydro-dataset ;(vectors of the actual rivers) hydro-sites ; Holds a list of patches that are the identified sites for small hydro sites hydro-max-potentials ; Holds the corresponding max potential for the sites in hydro-sties list secondary-grids ; Holds the number of secondary grids that are made in the network dg-mix ; The level of decentralized generation that results county-list ; An actual list of the county names total-power-plants ; Counts the number of power plants in the world clusters ;;Holds the number of clusters that are made in the network turn target-county ;; These are used to determine the county we should put the next power-plant in ;; when working with the equal development strategy. ;; These are the biomass potentials for each county county-biomass county-average-biomass county-patch-count bomi-biomass bomi-patches bomi-average-biomass bong-biomass bong-patches bong-average-biomass grand-bassa-biomass grand-bassa-patches grand-bassa-average-biomass grand-cape-mount-biomass grand-cape-mount-patches grand-cape-mount-average-biomass grand-gedeh-biomass grand-gedeh-patches grand-gedeh-average-biomass grand-kru-biomass grand-kru-patches grand-kru-average-biomass lofa-biomass lofa-patches lofa-average-biomass margibi-biomass margibi-patches margibi-average-biomass maryland-biomass maryland-patches maryland-average-biomass montserrado-biomass montserrado-patches montserrado-average-biomass nimba-biomass nimba-patches nimba-average-biomass rivercess-biomass rivercess-patches rivercess-average-biomass sinoe-biomass sinoe-patches sinoe-average-biomass river-gee-biomass river-gee-patches river-gee-average-biomass gbarpolu-biomass gbarpolu-patches gbarpolu-average-biomass ; Number of power plants in each county Bomi-pp Bong-pp Grand-Bassa-pp Grand-Cape-Mount-pp Grand-Gedeh-pp Grand-Kru-pp Lofa-pp Margibi-pp Maryland-pp ;; Number of Power Plants in each county Montserrado-pp Nimba-pp Rivercess-pp Sinoe-pp River-Gee-pp Gbarpolu-pp ;Globals for verification data p-largest-potential ;patch with the largest resource potential p-central ; patch with the larges resource centrality biggest-population ;project with the most people p-biggest-population ; best patch for the project with the most people p-jobs ;patch with the most job potential p-inflows ; patch with the most economic inflows lowest-project-cost ; project with the lowest project cost p-lowest-cost ; best patch for the project with the lowest project cost lowest-cost ;actual project cost of the lowest project cost lowest-dg-project ;project with lowest dg cost lowest-dg-cost ;dg cost of the lowest dg cost project lowest-dg-best-patch ;best-patch] of lowest-dg-project lowest-ge-project ;project with the lowest ge cost lowest-ge-cost ;ge-cost of lowest-ge-project lowest-ge-best-patch ;best-patch of lowest-ge-project most-recent-plant ;latest plant created most-recent-patch-developed ;patch where the most-recent-plant was built line-list ;contains the lines that are being created patch-v ;a patch I will follow for verification purposes agent-v ;a turtle I will follow for verification purposes ; (counties "Bomi" "Bong" "Grand Bassa" "Grand Cape Mount" "Grand Gedeh" "Grand Kru" "Lofa" "Margibi" ; "Maryland" "Montserrado" "Nimba" "Rivercess" "Sinoe" "River Gee" "Gbarpolu") storage-needed ; Shows the storage necessary to keep a kW of solar as dispatchable given the load curve load-factor solar-required-per-kw-demand ;the kWp solar installation required per kW of solar demand calculated with the load factor patchlist ;a list of patches that need a tie breaker in case of similar variable values average-generator-size ;the average size of generation generator-list ;a list of the generators we have generator-list-size ;a list of the sizes of the generators solar-job-factor hydro-job-factor biomass-job-factor ; The number of internal jobs created per unit energy produced solar-economic-factor hydro-economic-factor biomass-economic-factor ;Amount of internal economic flows created per unit energy produced ] breed [ power-plants power-plant ] ;; Power Production Units breed [ darks dark ] ;; Agents that are not connected breed [ electrifieds electrified ] ;; Fully electrified agents breed [ incompletes incomplete ] ;; Connected agents with some demand remaining breed [unmets unmet] ;; Agents that can't be supplied because there is no further capacity to provide them turtles-own [ name ; Name of the district they represent in-county ; County they are located in baseline-people ; Number of people the agent starts with at the begining of the configuration ; It helps keep the geography stable in case we move to making growing population experiments people ; Number of people the agent has in this time step original-demand ; Initial demand of the people in the agent remaining-demand ; Demand that has not been met at this step closest-socket ; Closest socket to a project distance-to-socket ; Distance to the closest socket possible-supplier ; A power plant that may provide the power demand of the turtle through the socket possible-supply ; When calculating the transmission cost, turtles use this variable to determine the amount of electricitiy ; they may be getting from their possible supplier. possible-line-cost ; The cost per km of a possible line to the possible-socket supplier ; Power-plant an agent is connected to through its network supplying electricity supplier-list ; List of Power-plants an agent is connected to through its network if more than one possible-technology ; The source of electricity that the possible-supplier has technology ; The source of electricity that the agent actually is connected to ge-cost ; The cost of connecting to a grid with capacity dg-cost ; The cost of decentralized generation including generation equipment and transmission project-cost ; The lowest cost of either dg or ge costs best-patch ; The patch that provides the cheapest dg cost for the agent determined by distance and available capacity dg-distance ; Distance to the best patch connection-mode ; The agent's preference at this step between ge and dg network ; A turtle set of all the agents connected to this agent (its secondary grid) transmission-links ; A link set of all the links in connected to this agent (the transmission of its secondary grid) open-capacity? ; True if the power plants in the agent's secondary grid have capacity for expansion transmission-capital-cost ;;it is the variable that holds the cost of transmission wires ;; which varies depending on capacity and length network-upgrade-cost ; This is the cost that would be incurred if a network has to be upgraded to ; carry a load to a new agent shortest-path ; Link-set of shortest path between a turtle and its supplier (for possible upgrade cost) shortest-path-list turtles-on-shortest-path ; The agents that are on the shortes path to the supplier turtles-on-shortest-path-list demand-on-path ; The sum of the demand that is on the shortest path ge-jobs dg-jobs max-jobs ge-flows dg-flows max-flows ] electrifieds-own [ node-to-connect ; The dark or incomplete that the electrified will connect to (the counter part ; of who this agent is a socket to) ] power-plants-own [ populations-serviced ; Agentset of populations the power plant is supplying (its secondary grid) demand-serviced ; Sum of the demand in the power-plants secondary grid transmission-serviced; Sum of the lenghts of the links in the power plant secondary grid node-to-connect ; The dark or incomplete that the electrified will connect to (the counter part ; of who this agent is a socket to) max-capacity ; Max capacity available in the patch the power plant is in available-capacity ; Capacity that is in the patch and is not being supplied to agents by the power plant generation-size ; The generation size of the power plant capital-cost ; Investment for this plant at its present capacity initial-connection ; The first agent the power plant connects to location ; The county where power plants are located ] patches-own [ baseline-potential ; This is the original potential in the configuration of the world ; It helps keep the geography stable largest-potential ; The largest potential in the patch (only a single technology) developed? ; True if there is a power-plant in the patch. Patches can only hold one power plant distance-list ; List of the distance to each population agent demand-list ; List of all the populations ci-list ; List of the ration of each population's number of people divided by its ; distance to this patch = (distance between agetn i and this patch)/(people in i) centrality ; Sum of the items in the ci-list. Low centrality is good, means the patch is ; relatively close to a lot of people. resource-centrality ; The ratio of the largest potential to the centrality. Large resource centrality ; is good. Means that the patch puts high level of resources in relative proximity to ; a lot of people. ; Each technology's LCOE for using the Patche's resources to an Agent calling the variable ; The patch owns the variable but it changes depending on the Agent who asks. dg-solar-cost-per-kw dg-biomass-cost-per-kw dg-hydro-cost-per-kw dg-cost-per-kw ; The chosen technology in the end LCOE dg-solar-jobs dg-biomass-jobs dg-hydro-jobs patch-possible-jobs dg-possible-jobs-list dg-solar-flows dg-hydro-flows dg-biomass-flows dg-possible-flows-list patch-possible-flows possible-transmission-capital-cost-list ; This list holds only the capital cost of transmission per kWh produced possible-transmission-cost-list possible-solar-transmission-cost possible-biomass-transmission-cost possible-hydro-transmission-cost possible-transmission-cost ; The cost of building transmission lines to this Patch from a certain Agent. ; The patch owns the variable but it changes according to the Agent ; calling the procedure. county ; The county the patch is located in biomass-shed ; The patch set around this Patch whose biomass potential can be ; economically transported to this patch for electricity generation biomass-potential ; The potential in this patch according to each technology. aggregated-biomass-potential ; aggregated-biomass-potential refers to the total biomass potential the solar-potential ; the Patch has access to including its neighboring patches (radius) hydro-potential biomass-base-potential ; The base potential that each patch receives at the begining of solar-base-potential ; a world configuration. hydro-base-potential largest-potential-type ; The technology that is the largest potential for this Path source ; The technology that the Production Unit in this patch is using solar-inflows ; Potential Yearly economic inflows from each renewable technology biomass-inflows ; in this patch and the economic flows from the technology chosen hydro-inflows ; by the production unit to be created or actually created here. project-inflows solar-jobs ; Potential number of job years from each renewable technology biomass-jobs ; in this patch and the job years created from the hydro-jobs ; technology chosen by the Production unit to be created or created here. project-jobs line-cost closest-project priority ] links-own [ span ;Since length and distance are primitives a different variable name must be used ;to store the length of the link in km. grade ;This is the grade of the link cost-km ;Cost of this grade of link per km new-cost-km ;This is the cost per km that a cable would require if upgraded according to the ;different loadability tests upgrade-cost-km ;The difference between the old cost of the cable and the new cost load-carried ;The load that a link is transferring between its two nodes upgrade-load ;The new load that a link would transfer if a new project is added to the secondary ;network the link belongs to. ] ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to load-the-world ;; This procedure loads the GIS datasets that we need. In the future the user may be able to ;; select the datasets of different countries. ;; The procedure also creates the populations and sets the needed variables. ca ; Load all datasets set countys-dataset gis:load-dataset "LiberiaGis/county boundary.shp" set districts-dataset gis:load-dataset "LiberiaGis/district boundary.shp" set clans-dataset gis:load-dataset "LiberiaGis/clan boundary.shp" ; The river data is included only for possible visual representation. set hydro-dataset gis:load-dataset "LiberiaRenewables/rivers.shp" gis:set-world-envelope (gis:envelope-union-of (gis:envelope-of countys-dataset) (gis:envelope-of districts-dataset) (gis:envelope-of clans-dataset)) set county-list (list "Bomi" "Bong" "Grand Bassa" "Grand Cape Mount" "Grand Gedeh" "Grand Kru" "Lofa" "Margibi" "Maryland" "Montserrado" "Nimba" "Rivercess" "Sinoe" "River Gee" "Gbarpolu") set area-of-patches 89453012.05 ;This is the area of a patch in the model in m2 according to the size of Liberia and the number of patches here. create-population-centers ;Please note that because we calculate patch potentials in the load-world, anytime we change the load curve shape we will have to go back to loading the world ; The same is true with the battery requirements. set hours-of-sun insolation calculate-load-factor set-technology-factors ; Sets the job and ecnomic factors set-patch-potentials calculate-CRF if randomize-tech-costs = true [calculate-technology-costs] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-technology-factors set solar-job-factor 0.88 * 10 ^ -6 ;Jobs per kWh set solar-economic-factor 9.1 * 10 ^ -3 ;$ per kWh set hydro-job-factor 0.28 * 10 ^ -6 ;Jobs per kWh set hydro-economic-factor 0 * 10 ^ -3 ;$ per kWh set biomass-job-factor 0.21 * 10 ^ -6 ;Jobs per kWh set biomass-economic-factor 36.8 * 10 ^ -3 ;$ per kWh end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to setup ; This procedure sets up the world to start a simulation. Notice it doesnt change things ;that have been loaded with the world. However, it allows for new configurations of the same ;world. For instance you can try the GE and DG preferences of the central stakeholder without ;changing the financial parameters and demand of the population. ; Because the user might be trying to compare some preferences to each other we need to be able ;return everything to its original state. So the first few comands are for this purpose. reset-ticks ask links [die] ask power-plants [die] if duration-base-load + duration-morning-peak + duration-evening-peak > 24 [user-message ("There are more than 24 hours in your load curve!") stop] set darks-list [] set line-list [] set agent-v one-of turtles set patch-v one-of patches ask turtles [ set breed darks set network turtle-set self set supplier-list turtle-set nobody set transmission-links link-set nobody set shortest-path link-set nobody set shape "house" set size 1 set original-demand (people / 7) * peak-power-demand / 1000 ;This puts units in kW to match the potentials data later set remaining-demand original-demand set darks-list lput (self) darks-list ; Starts a list with all darks set projects turtle-set darks set possible-supplier nobody] reset-base-potentials calculate-load-factor calculate-storage-needed ask patches with [not is-string? county] [set pcolor grey set developed? true] pick-project-patch print project-patch initiate-grid end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to go nw:set-context turtles links set expansion-node nobody set darks-list [] set projects (turtle-set darks incompletes) ; This puts all the turtles that need supply into one group set sockets (turtle-set power-plants electrifieds) ; This puts all the turtles that are supplied in one group ask patches [ ; This ensures that the patches are using fresh data to calculate decisions set possible-transmission-cost 0 set dg-cost-per-kw 0 set dg-solar-jobs 0 set dg-biomass-jobs 0 set dg-hydro-jobs 0 set patch-possible-jobs 0 set dg-possible-jobs-list [] set dg-solar-flows 0 set dg-hydro-flows 0 set dg-biomass-flows 0 set dg-possible-flows-list [] set patch-possible-flows 0] ask patches with [developed? = false][ update-potentials ] ask sockets [ ;; Sockets whose power-plants have capacity update their status so that other projects can connect to them ifelse [available-capacity] of supplier > 0 [set open-capacity? true] [set open-capacity? false]] ifelse any? projects ;; If there are still populations that dont have enough supply the model continues [ask projects [ set darks-list lput (self) darks-list set best-patch nobody ] ;; All projects decide what is cheaper for them dg or ge pick-next-project ;; The model determines who is going to get connected ask expansion-node [ ;; The turtle to get connected is connected or a dg project is built grow-network] calculate-reporting-variables ;print-verification-data ;print project-patch tick ] ;; If all the populations have supply the power-plants update their variables and the model stops. [calculate-reporting-variables stop ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-reporting-variables set total-plant-investment sum [capital-cost] of power-plants set total-transmission-investment sum [span * cost-km ] of links * 9.46 set total-generation sum [max-capacity - available-capacity] of power-plants calculate-generation-portfolio set overall-lcoe (%-solar-gen * solar-capital * CRFsolar / (load-factor * 8760)) + (%-solar-gen * solar-o&m / (load-factor * 8760)) + (%-solar-gen * battery-capital * (((morning-peak * duration-morning-peak + base-load * duration-base-load + duration-evening-peak) - hours-of-sun * base-load) / round-trip-battery-efficiency) / (load-factor * 8760)) + (%-biomass-gen * biomass-capital * CRFbiomass / (load-factor * 8760)) + (%-biomass-gen * biomass-o&m / (load-factor * 8760)) + %-biomass-gen * ((Pl * biomass-fuel) / (biomass-heat-content * .30 * 278 )) + (%-hydro-gen * hydro-capital * CRFhydro / (load-factor * 8760)) + (%-hydro-gen * hydro-o&m / (load-factor * 8760)) + (total-transmission-investment * CRFtrans / (load-factor * 8760 * sum [original-demand] of turtles)) calculate-line-percentages calculate-total-economic-inflows calculate-job-years set secondary-grids (length nw:weak-component-clusters) - count darks set dg-mix secondary-grids / (count electrifieds) report-locations set total-population sum [people] of turtles set average-population total-population / (count turtles - count power-plants) set %-unelectrified sum [people] of projects / sum [people] of turtles set total-power-plants count power-plants set average-generator-size total-generation / total-power-plants ask power-plants [ set generation-size max-capacity - available-capacity] if any? projects [ set p-largest-potential max-one-of patches with [developed? = false] [largest-potential] set biggest-population max-one-of projects [people] set p-biggest-population [best-patch] of biggest-population set p-jobs max-one-of patches with [developed? = false] [project-jobs] set p-inflows max-one-of patches with [developed? = false] [project-inflows] set lowest-project-cost min-one-of projects [project-cost] set p-lowest-cost [best-patch] of lowest-project-cost set lowest-cost [project-cost] of lowest-project-cost set lowest-dg-project min-one-of projects [dg-cost] set lowest-dg-cost [dg-cost] of lowest-dg-project set lowest-dg-best-patch [best-patch] of lowest-dg-project set lowest-ge-project min-one-of projects [ge-cost] set lowest-ge-cost [ge-cost] of lowest-ge-project set lowest-ge-best-patch [best-patch] of lowest-ge-project set most-recent-plant max-one-of power-plants [who] set most-recent-patch-developed [patch-here] of most-recent-plant set electrification-method [connection-mode] of expansion-node ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-line-percentages ;This procedure takes the span of each grade of line and calculates the percentage of the total ; for each. set %-33kv 100 * (sum [span] of links with [grade = 33] )/ sum [span] of links set %-138kv 100 * (sum [span] of links with [grade = 138] )/ sum [span] of links set %-230kv 100 * (sum [span] of links with [grade = 230]) / sum [span] of links set %-345kv 100 * (sum [span] of links with [grade = 345]) / sum [span] of links set %-500kv 100 * (sum [span] of links with [grade = 500] )/ sum [span] of links end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to create-population-centers ; This procedure makes a population center agent in the centroid of each district present in the ; district dataset. It loads the accompanying data in the dataset of number of people and ; sets the appropriate demand variables. set darks-list [] gis:set-drawing-color cyan gis:draw districts-dataset 1 foreach gis:feature-list-of districts-dataset [ let centroid gis:location-of gis:centroid-of ? ; centroid will be an empty list if it lies outside the bounds ; of the current NetLogo world, as defined by our current GIS ; coordinate transformation if not empty? centroid [ create-darks 1 [ set xcor item 0 centroid set ycor item 1 centroid set size 1 set name gis:property-value ? "FIRST_DNAM" set baseline-people gis:property-value ? "Population" set people baseline-people set in-county gis:property-value ? "FIRST_FIRS" set network turtle-set self ; We initiate the "network" for this turtle, its secondary grid. set supplier-list turtle-set nobody ;We initiate the supplier-list set transmission-links link-set nobody ;We initiate the link set of links to this turtle set shortest-path link-set nobody ifelse in-county = "Montserrado" ;The model ignores Monrovia and the Montserrado urban areas. [ die ] [ set shape "house" set size 1 ] set darks-list lput (self) darks-list ; Starts a list with all darks ] ]] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-patch-potentials ; This procedure stes the patches up with the name of their location and the energy potentials ; it owns based on each technology. gis:apply-coverage countys-dataset "FIRST_FIRS" county ;This command applies the names of the countys in the datase to the patches variable "county". ;If a patch lies in two counties it gets the name of the county that takes up most of the patches area. ask patches with [not is-string? county] [set pcolor grey set developed? true] ;; This takes all patches outside of the country of Liberia and makes then "developed" so that the agents dont use them in calculations. set-biomass-potential set-solar-potential set-hydro-potential end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-biomass-potential ; This procedure takes the total biomass potential available in a county in dry tonnes per year and figures out the ; average maximum potential in each patch of that county. The procedure ; converts it to kW of maximum dispatchable potential. ; The procedure also sets the patches biomass-shed, which is the patch set of neighboring ; patches that the particular patch can collect resources from to aggregate its biomass potential. ; This has to happen since biomass can be moved limited distances without affecting the LCOE. set bomi-biomass 88765 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set bomi-patches count patches with [county = "Bomi"] set bomi-average-biomass (bomi-biomass) / (8760 * bomi-patches * load-factor) ask patches with [county = "Bomi"] [set biomass-base-potential bomi-average-biomass] set bong-biomass 1127053 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set bong-patches count patches with [county = "Bong"] set bong-average-biomass (bong-biomass) / (8760 * bong-patches * load-factor) ask patches with [county = "Bong"] [set biomass-base-potential bong-average-biomass] set grand-bassa-biomass 512567 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set grand-bassa-patches count patches with [county = "Grand Bassa"] set grand-bassa-average-biomass (grand-bassa-biomass) / (8760 * grand-bassa-patches * load-factor) ask patches with [county = "Grand Bassa"] [set biomass-base-potential grand-bassa-average-biomass] set grand-cape-mount-biomass 292417 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set grand-cape-mount-patches count patches with [county = "Grand Cape Mount"] set grand-cape-mount-average-biomass (grand-cape-mount-biomass) / (8760 * grand-cape-mount-patches * load-factor) ask patches with [county = "Grand Cape Mount"] [set biomass-base-potential grand-cape-mount-average-biomass] set grand-gedeh-biomass 138597 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set grand-gedeh-patches count patches with [county = "Grand Gedeh"] set grand-gedeh-average-biomass (grand-gedeh-biomass) / (8760 * grand-gedeh-patches * load-factor) ask patches with [county = "Grand Gedeh"] [set biomass-base-potential grand-gedeh-average-biomass] set grand-kru-biomass 78392 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set grand-kru-patches count patches with [county = "Grand Kru"] set grand-kru-average-biomass (grand-kru-biomass) / (8760 * grand-kru-patches * load-factor) ask patches with [county = "Grand Kru"] [set biomass-base-potential grand-kru-average-biomass] set lofa-biomass 497025 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set lofa-patches count patches with [county = "Lofa"] set lofa-average-biomass (lofa-biomass) / (8760 * lofa-patches * load-factor) ask patches with [county = "Lofa"] [set biomass-base-potential lofa-average-biomass] set margibi-biomass 679251 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set margibi-patches count patches with [county = "Margibi"] set margibi-average-biomass (margibi-biomass) / (8760 * margibi-patches * load-factor) ask patches with [county = "Margibi"] [set biomass-base-potential margibi-average-biomass] set maryland-biomass 336302 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set maryland-patches count patches with [county = "Maryland"] set maryland-average-biomass (maryland-biomass) / (8760 * maryland-patches * load-factor) ask patches with [county = "Maryland"] [set biomass-base-potential maryland-average-biomass] set montserrado-biomass 2289024 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set montserrado-patches count patches with [county = "Montserrado"] set montserrado-average-biomass (montserrado-biomass) / (8760 * montserrado-patches * load-factor) ask patches with [county = "Montserrado"] [set biomass-base-potential montserrado-average-biomass] set nimba-biomass 2398052 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set nimba-patches count patches with [county = "Nimba"] set nimba-average-biomass (nimba-biomass) / (8760 * nimba-patches * load-factor) ask patches with [county = "Nimba"] [set biomass-base-potential nimba-average-biomass] set rivercess-biomass 99591 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set rivercess-patches count patches with [county = "Rivercess"] set rivercess-average-biomass (rivercess-biomass) / (8760 * rivercess-patches * load-factor) ask patches with [county = "Rivercess"] [set biomass-base-potential rivercess-average-biomass] set sinoe-biomass 316351 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set sinoe-patches count patches with [county = "Sinoe"] set sinoe-average-biomass (sinoe-biomass) / (8760 * sinoe-patches * load-factor) ask patches with [county = "Sinoe"] [set biomass-base-potential sinoe-average-biomass] set river-gee-biomass 170596 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set river-gee-patches count patches with [county = "River Gee"] set river-gee-average-biomass (river-gee-biomass) / (8760 * river-gee-patches * load-factor) ask patches with [county = "River Gee"] [set biomass-base-potential river-gee-average-biomass] set gbarpolu-biomass 407402 * 0.25 * biomass-heat-content * 277.8 ;dry tonnes/yr * 0.25 efficiency * 17.5 Gj/ton * 277.8 kWh/Gj set gbarpolu-patches count patches with [county = "Gbarpolu"] set gbarpolu-average-biomass (gbarpolu-biomass) / (8760 * gbarpolu-patches * load-factor) ask patches with [county = "Gbarpolu"] [set biomass-base-potential gbarpolu-average-biomass] ask patches [ set biomass-shed (patch-set patches with [pxcor >= ([pxcor] of myself - 2) and pxcor <= ([pxcor] of myself + 2) and pycor >= ([pycor] of myself - 2) and pycor <= ([pycor] of myself + 2)]) set aggregated-biomass-potential sum [biomass-base-potential] of biomass-shed] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-solar-potential ; This procedure sets the solar potential in each patch in kW of potential set hours-of-sun insolation ;4030 Wh/m2/day According to worst case month in liberia as reported by [1] European Commission -- Joint Research Centre -- ;Institute for Environment and Sustainability, “Photovoltaic Geographical InformatioN Systems.” 2015. ask patches with [developed? != true] [set solar-base-potential ((round-trip-battery-efficiency * panel-efficiency * (1 - PV-system-losses) * area-of-patches * area-for-solar * insolation) / (morning-peak * duration-morning-peak + base-load * duration-base-load + duration-evening-peak )) ; gives solar potential in kw ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-hydro-potential ; This procedure assigns hydro potential to the patches that have been identified as promising. ; The Africa Energy Unit Report provides a map which was translated netlogo world patches. ; The model ignores large potential sites (> 10 MW) since those are at the St John river and ; Mount Coffee sites expected to be used for the Monrovia Grid. They would also involve different ; infrastructure than the ones considered here. set hydro-sites (list patch -16 12 patch -15 12 patch -13 12 patch -7 17 patch -5 18 patch -7 21 patch -5 23 patch -4 21 patch -2 22 patch -19 3 patch -18 3 patch -18 4 patch -15 9 patch -13 3 patch -12 5 patch -9 6 patch -4 9 patch 9 10 patch -4 -2 patch -3 -1 patch 1 1 patch 4 2 patch 10 0 patch 9 -1 patch 7 -4 patch 6 -6 patch 4 -7 patch -3 -7 patch 10 -18 patch 13 -17 patch 20 -16 patch 12 -20 patch -9 1) set hydro-max-potentials (list 10000 10000 10000 10000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 1000 10000 10000 10000 10000 1000 1000 1000 10000 10000 1000 1000 1000 1000 100 10000) (foreach hydro-sites hydro-max-potentials [ ask ?1 [ set hydro-base-potential ?2 * 0.3 ;We cut the maximum potential at each side by 70% as a way to control ; demand and peak power. This way we know for sure the potential will ;be enough for the demand even in the dry season. ] ]) ask patches [ if hydro-base-potential = 0 [set hydro-base-potential 0.001]] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-storage-needed set storage-needed (duration-evening-peak + duration-morning-peak * morning-peak + base-load * duration-base-load - hours-of-sun * base-load) / round-trip-battery-efficiency ; This provides needed storage in kWh/kW of installed capacity end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-load-factor ;This is the same as the load factor necessary for the electricity calculations. set load-factor (base-load * duration-base-load + duration-evening-peak + duration-morning-peak * morning-peak) / 24 ;This provides my daily electricity demand per kW of peak electricity in kWh/kW if load-factor >= 1 [ user-message ("Load factor is greater than 1")] set solar-required-per-kw-demand (duration-evening-peak + duration-morning-peak * morning-peak + base-load * (duration-base-load + (round-trip-battery-efficiency - 1) * hours-of-sun )) / (hours-of-sun * ( 1 - PV-system-losses) * round-trip-battery-efficiency) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-CRF ; This procedure sets all the capital recovery factor (CRF) parameters needed and ;calculates a CRF for the world. Notice, the CRF will not change until you load the world again. ;This is done so that you can compare a full run of DG, GE, and other preferences under the same ;costs. set discount-rate .12 ;The discount rate for LCOE calculations set taxes-insurance .03 ; The taxes and insurance for LCOE calculations set solar-lifespan 25 ;According to Irena set battery-lifespan 2.5 ; Modi in Liberia set biomass-lifespan 20 ;According to Irena set hydro-lifespan 30 ;According to Irena set transmission-lifespan 40 ; No reference set CRFsolar (discount-rate / ( 1 - (( 1 + discount-rate ) ^ (-1 * solar-lifespan)))) + taxes-insurance set CRFbatteries (discount-rate / ( 1 - (( 1 + discount-rate ) ^ (-1 * battery-lifespan)))) + taxes-insurance set CRFbiomass (discount-rate / ( 1 - (( 1 + discount-rate ) ^ (-1 * biomass-lifespan)))) + taxes-insurance set CRFhydro (discount-rate / ( 1 - (( 1 + discount-rate ) ^ (-1 * hydro-lifespan)))) + taxes-insurance set CRFtrans (discount-rate / ( 1 - (( 1 + discount-rate ) ^ (-1 * transmission-lifespan)))) + taxes-insurance set pl discount-rate / (discount-rate - 0.02) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-technology-costs ; This procedure sets all the costs for the different renewable technologies considered ;The level of data available forces us to use triangular distributions around the averages ;minium an maximum of each parameter. As with CRF the costs are only calculated when the ;world is loaded allowing us to compare preferences in the same world. ;; WE create a triangular distribution for solar capital-cost let z random-float 1 ifelse z >= .5 [ set solar-capital 4100 - (((1 - z) * 1400 * 700) ^ .5)] [ set solar-capital 2700 + ((z * 1400 * 700)^ .5) ] ;; WE create a triangular distribution for solar om let a random-float 1 ifelse a >= .5 [ set solar-o&m 14.02 - (((1 - a) * 4.68 * 2.34) ^ .5)] [ set solar-o&m 9.34 + ((a * 4.68 * 2.34)^ .5) ] ;; WE create a triangular distribution for hydro capital cost let b random-float 1 ifelse b >= .5 [ set hydro-capital 2400 - (((1 - b) * 800 * 400) ^ .5)] [ set hydro-capital 1600 + ((b * 800 * 400)^ .5) ] ;; WE create a triangular distribution for hydro om let c random-float 1 ifelse c >= .5 [ set hydro-o&m .04 - (((1 - b) * .03 * .015) ^ .5)] [ set hydro-o&m .01 + ((b * .03 * .015)^ .5) ] ;; WE create a triangular distribution for hydro duty factor let d random-float 1 ifelse d >= .72 [ set hydro-duty-factor .60 - (((1 - d) * .40 * .20) ^ .5)] [ set hydro-duty-factor .20 + ((b * .40 * .20)^ .5) ] ;; WE create a triangular distribution for biomass capital cost let f random-float 1 ifelse f >= .5 [ set biomass-capital 4100 - (((1 - f) * 1500 * 750) ^ .5)] [ set biomass-capital 2600 + ((f * 1500 * 750)^ .5) ] ;; WE create a triangular distribution for bio om let g random-float 1 ifelse g >= .5 [ set biomass-o&m 77.34 - (((1 - g) * 25.74 * 12.89) ^ .5)] [ set biomass-o&m 51.56 + ((b * 25.74 * 12.85)^ .5) ] ;; WE create a triangular distribution for biomass fuel cost let h random-float 1 ifelse h >= .5 [ set biomass-fuel 3 - (((1 - h) * 2 * 1) ^ .5)] [ set biomass-fuel 1 + ((h * 2 * 1)^ .5) ] ;; WE create a triangular distribution for biomass duty factor let i random-float 1 ifelse i >= .5 [ set biomass-duty-factor .90 - (((1 - i) * .20 * .10) ^ .5)] [ set biomass-duty-factor .70 + ((i * .20 * .10)^ .5) ] set biomass-heat-content 17.5 ;Gj/ton end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to pick-project-patch ;; This procedure picks that patch where a new power-plant will be built by the Observer. ;; The patch is selected according to the choice of the user for the Observer preference rules. if decision-strategy = "multiple-resource" [ ask projects [calculate-lcoe-dg] set initial-population min-one-of projects [dg-cost] set project-patch [best-patch] of initial-population ;We pick the patch for the cheapest project ] ;............................................................. if decision-strategy = "central-resource" ;; The patch will be the one with the maximum resource-centrality [calculate-resource-centrality set p-central max-one-of patches with [developed? = false ] [resource-centrality] set project-patch max-one-of patches with [developed? = false ] [resource-centrality] set initial-population nobody] ;............................................................. if decision-strategy = "largest-resource" ;; Picks the largest resource patch [ask patches with [developed? = false] [update-potentials] set project-patch max-one-of patches with [developed? = false ] [largest-potential] ;This is a tie breaker if there is more than one patch with largest potential being solar if [source] of project-patch = "solar" [ set initial-population max-one-of projects [people] set project-patch patch ([xcor] of initial-population) ([ycor] of initial-population) ] ;This is a tie breaker in case there are more than on patch with the same max hydro potential if [source] of project-patch = "hydro" [ set patchlist nobody set patchlist patches with [developed? = false and source = "hydro" and hydro-potential = [hydro-potential] of project-patch] ask patchlist [ set closest-project min-one-of projects [distance myself] set priority [people] of closest-project / distance closest-project] set project-patch max-one-of patchlist [priority] ] ;This is a tie breaker in case there are more than on patch with the same max biomass potential if [source] of project-patch = "biomass" [ set patchlist nobody set patchlist patches with [developed? = false and source = "biomass" and aggregated-biomass-potential = [aggregated-biomass-potential] of project-patch] ask patchlist [ set closest-project min-one-of projects [distance myself] set priority [people] of closest-project / distance closest-project] set project-patch max-one-of patchlist [priority] ] set initial-population nobody] ;............................................................. if decision-strategy = "largest-population" ;; Picks a patch chosen by the larges population in the world [set initial-population max-one-of projects [people] ask initial-population [calculate-lcoe-dg set project-patch [best-patch] of initial-population ;; The largest population picks the best patch considering distance and power potential ]] ;............................................................. if decision-strategy = "largest-inflows" [ask projects [calculate-dg-flows] set initial-population max-one-of projects [dg-flows] set project-patch [best-patch] of initial-population ] ;............................................................. if decision-strategy = "most-jobs" [ ask projects [calculate-dg-jobs] set initial-population max-one-of projects [dg-jobs] set project-patch [best-patch] of initial-population ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to initiate-grid ;; This procedure creates the first connection for a new power plant ask project-patch [ create-power-plant ask power-plants-here [ ifelse initial-population != nobody [set expansion-node initial-population] [set expansion-node min-one-of projects [distance myself]] ask expansion-node [set closest-socket myself] ]] ask expansion-node [connect-project] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-resource-centrality ; This procedure calculates the resource centrality of the patches. Resource Centrality ; considers the distance of the patch to all people in the world and the resources ; available at the patch. Then it combines it in an index to show the pactches potential ; compared to its distance to a lot of people. ask patches with [developed? = false] [ set distance-list [] set demand-list [] set ci-list [] foreach darks-list [ set distance-list lput (distance ? ) distance-list ;Puts the distance to every dark agent in the list set demand-list lput ( [remaining-demand] of ? ) demand-list ; Puts the remaining demand of every project in the list ] set ci-list ( map / distance-list demand-list ) ;Divides the lists above set centrality sum ci-list ; Sets the centrality value as the sum of every item in the list. In other words ; It sums the distance of the agent to all demand in the world set resource-centrality largest-potential / centrality ; The ratio of resource potential to the centrality ] set largest-centrality-group max-n-of 5 patches [resource-centrality] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-lcoe-dg ; This procedure is where populations calculate their decentralized generation cost. ; Each population calculates what would be the cost to establish a production unit in each ; patch available while also considering its own demand the available potential in the patch ; and the distance to the patch. The turtle sets the patch that results in the lowest lcoe cost ; as its best patch and the technology in the patch as its possible source. ask patches with [developed? = false] [calculate-possible-transmission-capital-cost set dg-solar-cost-per-kw (solar-required-per-kw-demand * solar-capital * CRFsolar / (load-factor * 8760)) + possible-solar-transmission-cost + battery-capital * CRFbatteries * storage-needed / (load-factor * 8760) + (solar-o&m / (load-factor * 8760)) set dg-biomass-cost-per-kw (biomass-capital * CRFbiomass / (load-factor * 8760)) + possible-biomass-transmission-cost + (biomass-o&m / (load-factor * 8760)) + ((Pl * biomass-fuel) / (biomass-heat-content * .25 * 278 )) ;assumes 30% efficiency for biomass and 278 is a conversion factor for Gj to kWh if hydro-potential = 0 [set hydro-potential .001] set dg-hydro-cost-per-kw (hydro-capital * CRFhydro / (8760 * load-factor)) + possible-hydro-transmission-cost + (hydro-o&m / (load-factor * 8760)) if dg-solar-cost-per-kw < dg-biomass-cost-per-kw and dg-solar-cost-per-kw < dg-hydro-cost-per-kw [set dg-cost-per-kw dg-solar-cost-per-kw set source "solar"] if dg-biomass-cost-per-kw < dg-solar-cost-per-kw and dg-biomass-cost-per-kw < dg-hydro-cost-per-kw [set dg-cost-per-kw dg-biomass-cost-per-kw set source "biomass"] if dg-hydro-cost-per-kw < dg-solar-cost-per-kw and dg-hydro-cost-per-kw < dg-biomass-cost-per-kw [set dg-cost-per-kw dg-hydro-cost-per-kw set source "hydro"] ] set best-patch min-one-of patches with [developed? = false] [dg-cost-per-kw] ifelse best-patch != nobody ;; If the turtle did find a patch then that patch cost becomes its dg-cost [set dg-cost [dg-cost-per-kw] of best-patch set technology [source] of best-patch] ;; If it didnt then the cost is 0 which is dealt with in the pick-connection-mode procedure [set dg-cost 0] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-project-inflows ; This procedure calculates the amount of yearly economic flows that are created. ; Values for the economic flows of each technology come from literature. The procedure ; sets the possible flows to the maximum of the flows created by the technologies and the source ; technology as the one that created the maximum flows. set solar-inflows solar-potential * 0.0091 * 8760 * load-factor;this provides the inflows in $/year set biomass-inflows aggregated-biomass-potential * 0.0368 * 8760 * load-factor ifelse solar-inflows > biomass-inflows [set project-inflows solar-inflows set source "solar"] [set project-inflows biomass-inflows set source "biomass"] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-jobs ; This procedure calculates the number of job years that are possible for the patch. ; Values for the job years of each technology come from literature. The procedure ; sets the possible job years to the maximum created by the technologies and the source ; technology as the one that created the maximum jobs. set solar-jobs solar-potential * 8760 * load-factor * 0.87 / 1000000 ;this provides the numnber of job years for the project set biomass-jobs aggregated-biomass-potential * 8760 * load-factor * 0.21 / 1000000 set hydro-jobs hydro-potential * 8760 * load-factor * 0.27 / 1000000 if solar-jobs > biomass-jobs and solar-jobs > hydro-jobs [set project-jobs solar-jobs set source "solar"] if biomass-jobs > solar-jobs and biomass-jobs > hydro-jobs [set project-jobs biomass-jobs set source "biomass"] if hydro-jobs > solar-jobs and hydro-jobs > biomass-jobs [set project-jobs hydro-jobs set source "hydro"] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to create-power-plant ; This procedure creates a power plant at a chosen project patch sprout-power-plants 1 [ set size 1.5 set supplier self if source = "solar" [set max-capacity solar-potential set technology "solar" set shape "sun" set color 15 ] if source = "biomass" ; In the case of biomass we need to make sure that all patches that are providing ;resources to the new plant have their biomass and aggregated biomass potentials set ;to zero to avoid double counting of those potentials. [set max-capacity aggregated-biomass-potential set technology "biomass" set shape "plant" set color 65 ask biomass-shed [ set biomass-potential 0 set aggregated-biomass-potential 0] ] if source = "hydro" [set max-capacity hydro-potential set technology "hydro" set shape "drop" set color 97] set developed? true set available-capacity max-capacity set populations-serviced [] set network turtle-set self set transmission-links link-set nobody set shortest-path link-set nobody ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to connect-project ; This procedure is where the expansion-node and the socket ;actually get connected to each other. Then all variables ;are updated. let node1 expansion-node let node2 [supplier] of closest-socket create-link-with closest-socket [ ifelse [remaining-demand] of node1 < [available-capacity] of node2 [set load-carried [remaining-demand] of node1] [set load-carried [available-capacity] of node2] set-link-properties set line-list lput self line-list] set supplier [supplier] of closest-socket set technology [technology] of supplier ifelse [available-capacity] of supplier >= remaining-demand ;; This happens if the supplier has enough capacity for the demand. ;; The dark will now be an electrified and the available-capacity of the ;; power-plant is lowered [ask supplier[ set available-capacity available-capacity - [remaining-demand] of expansion-node if technology = "solar" [set capital-cost capital-cost + ([remaining-demand] of expansion-node * solar-capital / load-factor) + battery-capital * ([remaining-demand] of expansion-node / load-factor) * (((morning-peak * duration-morning-peak + base-load * duration-base-load + duration-evening-peak)/ round-trip-battery-efficiency) - hours-of-sun * base-load)] if technology = "biomass" [set capital-cost capital-cost + [remaining-demand] of expansion-node * biomass-capital / load-factor] if technology = "hydro" [set capital-cost capital-cost + [remaining-demand] of expansion-node * hydro-capital / load-factor] set network (turtle-set network [network] of myself) set transmission-links (link-set [my-links] of network) ask network [set network [network] of myself ;This ensures the connected turtles set transmission-links (link-set [my-links] of network) ]] ; all have the same network and the same links ask shortest-path [ set load-carried load-carried + [remaining-demand] of myself] upgrade-path set breed electrifieds set darks-list remove expansion-node darks-list ;; Here we remove the agent from the darks list set shape "house" set color yellow set supplier-list (turtle-set supplier-list supplier) set remaining-demand 0 ] ;; This happens if the supplier does not have enough capacity. The dark will ;; become an incomplete, lower its demand and the power-plant places its capacity to zero [ ask shortest-path [ set load-carried load-carried + [available-capacity] of [supplier] of myself] upgrade-path ask supplier [ if technology = "solar" [set capital-cost capital-cost + (available-capacity * solar-capital / load-factor) + battery-capital * (available-capacity / load-factor) * (((morning-peak * duration-morning-peak + base-load * duration-base-load + duration-evening-peak)/ round-trip-battery-efficiency) - hours-of-sun * base-load)] if technology = "biomass" [set capital-cost capital-cost + available-capacity * biomass-capital / load-factor] if technology = "hydro" [set capital-cost capital-cost + available-capacity * hydro-capital / load-factor] set network (turtle-set network [network] of myself) set transmission-links (link-set my-links) ask network [set network [network] of myself ;This ensures the connected turtles set transmission-links (link-set [my-links] of network)]] ; all have the same network and the same links set remaining-demand remaining-demand - [available-capacity] of supplier set breed incompletes set color cyan set supplier-list (turtle-set supplier-list supplier) ask supplier [set available-capacity 0] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-possible-transmission-capital-cost ;; This procedure is different from the calculate-transmisstion-capital-cost because it only applies to the ;; hypothetical situation where a patch would be connected to a possible socket. Because of that patches own the ;; possible-transmission-cost as opposed to transmission-capital-cost which is owned by populations. ; We need to check which is lower the remaining demand of the project or the available capacity of the patch. This also means ; the model needs to check each potential to calculate the appropriate costs for transmission. set possible-transmission-cost-list [] set dg-possible-jobs-list [] set dg-possible-flows-list [] (foreach (list (solar-potential) (aggregated-biomass-potential) (hydro-potential) ) (list (solar-required-per-kw-demand) 1 1) ;We add this multiplier because 1kW of demand needs more than 1kW of solar installed (list (solar-capital) (biomass-capital) (hydro-capital)) (list (solar-job-factor) (biomass-job-factor) (hydro-job-factor)) (list (solar-economic-factor) (biomass-economic-factor) (hydro-economic-factor)) (list (battery-capital) 0 0) [ ifelse [remaining-demand] of myself < ?1 [if distance myself <= 8.45 ;if the distance is less than 80 km ;we check loadability [if [remaining-demand] of myself < 14500 ;this is an assumed end I need to double check [set line-cost cost-of-33kv];use 33 kV if [remaining-demand] of myself >= 14500 and [remaining-demand] of myself < 156000 [set line-cost cost-of-138kv];use 138 kV if [remaining-demand] of myself >= 156000 and [remaining-demand] of myself < 435000 [set line-cost cost-of-230kv];use 230 kV if [remaining-demand] of myself >= 435000 and [remaining-demand] of myself < 1275000 [set line-cost cost-of-345kv];use 345 kV if [remaining-demand] of myself >= 1275000 [set line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ; between 80 and 100 km if distance myself > 8.45 and distance myself < 10.57 [ if [remaining-demand] of myself < 143000 [set line-cost cost-of-138kv];use 138 kV if [remaining-demand] of myself >= 143000 and [remaining-demand] of myself < 398750 [set line-cost cost-of-230kv];use 230 kV if [remaining-demand] of myself >= 398750 and [remaining-demand] of myself < 1168750 [set line-cost cost-of-345kv];use 345 kV if [remaining-demand] of myself >= 1168750 [set line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 100 and 200 km if distance myself >= 10.57 and distance myself < 21.14 [ if [remaining-demand] of myself < 117000 [set line-cost cost-of-138kv];use 138 kV if [remaining-demand] of myself >= 117000 and [remaining-demand] of myself < 326250 [set line-cost cost-of-230kv];use 230 kV if [remaining-demand] of myself >= 326250 and [remaining-demand] of myself < 956250 [set line-cost cost-of-345kv];use 345 kV if [remaining-demand] of myself >= 956250 [set line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 200 and 300 km if distance myself >= 21.14 and distance myself < 31.71 [ if [remaining-demand] of myself < 91000 [set line-cost cost-of-138kv];use 138 kV if [remaining-demand] of myself >= 91000 and [remaining-demand] of myself < 253750 [set line-cost cost-of-230kv];use 230 kV if [remaining-demand] of myself >= 253750 and [remaining-demand] of myself < 743750 [set line-cost cost-of-345kv];use 345 kV if [remaining-demand] of myself >= 743750 [set line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if distance myself >= 31.71 and distance myself < 42.28 [ if [remaining-demand] of myself < 67600 [set line-cost cost-of-138kv];use 138 kV if [remaining-demand] of myself >= 67600 and [remaining-demand] of myself < 188500 [set line-cost cost-of-230kv];use 230 kV if [remaining-demand] of myself >= 188500 and [remaining-demand] of myself < 552500 [set line-cost cost-of-345kv];use 345 kV if [remaining-demand] of myself >= 552500 [set line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if distance myself >= 42.28 [ if [remaining-demand] of myself < 57200 [set line-cost cost-of-138kv];use 138 kV if [remaining-demand] of myself >= 57200 and [remaining-demand] of myself < 159500 [set line-cost cost-of-230kv];use 230 kV if [remaining-demand] of myself >= 159500 and [remaining-demand] of myself < 467500 [set line-cost cost-of-345kv];use 345 kV if [remaining-demand] of myself >= 467500 [set line-cost cost-of-500kv];use 500 kV ] let x (distance myself * line-cost * 9.46 * CRFtrans) / ([remaining-demand] of myself * load-factor * 24 * 365) set possible-transmission-cost-list lput x possible-transmission-cost-list let y ([remaining-demand] of myself * load-factor * 24 * 365) * ?4 / (([remaining-demand] of myself * (?2 * ?3 + storage-needed * ?6)) + (distance myself * line-cost * 9.46)) ;Gives units of jobs generated per $ invested set dg-possible-jobs-list lput y dg-possible-jobs-list let z (([remaining-demand] of myself * load-factor * 24 * 365) * ?5) / (([remaining-demand] of myself * ?2 * ?3) + (distance myself * line-cost * 9.46)) ;Gives units of $ generated yearly / $ invested set dg-possible-flows-list lput z dg-possible-flows-list ] ;;;;;Otherwise [if distance myself <= 8.45 ;if the distance is less than 80 km ;we check loadability [if ?1 < 14500 ;this is an assumed end I need to double check [set line-cost cost-of-33kv];use 33 kV if ?1 >= 14500 and ?1 < 156000 [set possible-transmission-cost cost-of-138kv];use 138 kV if ?1 >= 156000 and ?1 < 435000 [set possible-transmission-cost cost-of-230kv];use 230 kV if ?1 >= 435000 and ?1 < 1275000 [set possible-transmission-cost cost-of-345kv];use 345 kV if ?1 >= 1275000 [set possible-transmission-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ; between 80 and 100 km if distance myself > 8.45 and distance myself < 10.57 [ if ?1 < 143000 [set possible-transmission-cost cost-of-138kv];use 138 kV if ?1 >= 143000 and ?1 < 398750 [set possible-transmission-cost cost-of-230kv];use 230 kV if ?1 >= 398750 and ?1 < 1168750 [set possible-transmission-cost cost-of-345kv];use 345 kV if ?1 >= 1168750 [set possible-transmission-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 100 and 200 km if distance myself >= 10.57 and distance myself < 21.14 [ if ?1 < 117000 [set possible-transmission-cost cost-of-138kv];use 138 kV if ?1 >= 117000 and ?1 < 326250 [set possible-transmission-cost cost-of-230kv];use 230 kV if ?1 >= 326250 and ?1 < 956250 [set possible-transmission-cost cost-of-345kv];use 345 kV if ?1 >= 956250 [set possible-transmission-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 200 and 300 km if distance myself >= 21.14 and distance myself < 31.71 [ if ?1 < 91000 [set possible-transmission-cost cost-of-138kv];use 138 kV if ?1 >= 91000 and ?1 < 253750 [set possible-transmission-cost cost-of-230kv];use 230 kV if ?1 >= 253750 and ?1 < 743750 [set possible-transmission-cost cost-of-345kv];use 345 kV if ?1 >= 743750 [set possible-transmission-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if distance myself >= 31.71 and distance myself < 42.28 [ if ?1 < 67600 [set possible-transmission-cost cost-of-138kv];use 138 kV if ?1 >= 67600 and ?1 < 188500 [set possible-transmission-cost cost-of-230kv];use 230 kV if ?1 >= 188500 and ?1 < 552500 [set possible-transmission-cost cost-of-345kv];use 345 kV if ?1 >= 552500 [set possible-transmission-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if distance myself >= 42.28 [ if ?1 < 57200 [set possible-transmission-cost cost-of-138kv];use 138 kV if ?1 >= 57200 and ?1 < 159500 [set possible-transmission-cost cost-of-230kv];use 230 kV if ?1 >= 159500 and ?1 < 467500 [set possible-transmission-cost cost-of-345kv];use 345 kV if ?1 >= 467500 [set possible-transmission-cost cost-of-500kv];use 500 kV ] if ?1 = 0 [ set ?1 ?1 + 0.01] let x (distance myself * line-cost * 9.46 * CRFtrans) / (?1 * load-factor * 24 * 365) set possible-transmission-cost-list lput x possible-transmission-cost-list let y (?1 * load-factor * 24 * 365 * ?4) / (?1 * (?2 * ?3 + storage-needed * ?6 ) + (distance myself * line-cost * 9.46)) ;Gives units of jobs generated per $ invested set dg-possible-jobs-list lput y dg-possible-jobs-list let z (?1 * load-factor * 24 * 365 * ?5) / ((?1 * ?2 * ?3) + (distance myself * line-cost * 9.46)) ;Gives units of $ generated yearly / $ invested set dg-possible-flows-list lput z dg-possible-flows-list ] ] ) set possible-solar-transmission-cost item 0 possible-transmission-cost-list set possible-biomass-transmission-cost item 1 possible-transmission-cost-list set possible-hydro-transmission-cost item 2 possible-transmission-cost-list set dg-solar-jobs item 0 dg-possible-jobs-list set dg-biomass-jobs item 1 dg-possible-jobs-list set dg-hydro-jobs item 2 dg-possible-jobs-list set dg-solar-flows item 0 dg-possible-flows-list set dg-biomass-flows item 1 dg-possible-flows-list set dg-hydro-flows item 2 dg-possible-flows-list end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to set-link-properties ;;In this procedure the links get their appropriate initial grades and costs if link-length <= 8.46 ;if the distance is less than 80 km then we check the line for loadability [if load-carried < 14500 [set-33kv] if load-carried >= 14500 and load-carried < 156000 [set-138kv] if load-carried >= 156000 and load-carried < 435000 [set-230kv] if load-carried >= 435000 [set-345kv] ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ; between 80 and 100 km if link-length > 8.46 and link-length < 10.57 [if load-carried < 143000 [set-138kv] if load-carried >= 143000 and load-carried < 398750 [set-230kv] if load-carried >= 398750 and load-carried < 1168750 [set-345kv] if load-carried >= 1168750 [set-500kv] ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 100 and 200 km if link-length >= 10.57 and link-length < 21.14 [ if load-carried < 117000 [set-138kv];use 138 kV if load-carried >= 117000 and load-carried < 326250 [set-230kv];use 230 kV if load-carried >= 326250 and load-carried < 956250 [set-345kv];use 345 kV if load-carried >= 956250 [set-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 200 and 300 km if link-length >= 21.14 and link-length < 31.71 [ if load-carried < 91000 [set-138kv];use 138 kV if load-carried >= 91000 and load-carried < 253750 [set-230kv];use 230 kV if load-carried >= 253750 and load-carried < 743750 [set-345kv];use 345 kV if load-carried >= 743750 [set-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if link-length >= 31.71 and link-length < 42.28 [ if load-carried < 67600 [set-138kv];use 138 kV if load-carried >= 67600 and load-carried < 188500 [set-230kv];use 230 kV if load-carried >= 188500 and load-carried < 552500 [set-345kv];use 345 kV if load-carried >= 552500 [set-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;above 400 km if link-length >= 42.28 [ if load-carried < 57200 [set-138kv];use 138 kV if load-carried >= 57200 and load-carried < 159500 [set-230kv];use 230 kV if load-carried >= 159500 and load-carried < 467500 [set-345kv];use 345 kV if load-carried >= 467500 [set-500kv];use 500 kV ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;Here we actually give the links their different properties according to their grade to set-33kv set grade 33 set cost-km cost-of-33kv set color 89.9 set span link-length end to set-138kv set grade 138 set cost-km cost-of-138kv set span link-length set color 65 end to set-230kv set grade 230 set cost-km cost-of-230kv set span link-length set color 45 end to set-345kv set grade 345 set cost-km cost-of-345kv set span link-length set color 25 end to set-500kv set grade 500 set cost-km cost-of-500kv set span link-length set color 15 end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to upgrade-path ; This procedure asks the links in the shortest path between a new project and the ;generation unit that will serve it to upgrade according to the loadability tests ;Because the links were created with appropriate grades according to their distance and ;loads the upgrade must occur only if the load is higher than the highest load ask shortest-path [ if span <= 8.46 ;if the distance is less than 80 km then we check the line for loadability [if load-carried < 14500 [set-33kv] if load-carried >= 14500 and load-carried < 156000 [set-138kv] if load-carried >= 156000 and load-carried < 435000 [set-230kv] if load-carried >= 435000 [set-345kv] ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ; between 80 and 100 km if span > 8.46 and span < 10.57 [if load-carried < 143000 [set-138kv] if load-carried >= 143000 and load-carried < 398750 [set-230kv] if load-carried >= 398750 and load-carried < 1168750 [set-345kv] if load-carried >= 1168750 [set-500kv] ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 100 and 200 km if span >= 10.57 and span < 21.14 [ if load-carried < 117000 [set-138kv];use 138 kV if load-carried >= 117000 and load-carried < 326250 [set-230kv];use 230 kV if load-carried >= 326250 and load-carried < 956250 [set-345kv];use 345 kV if load-carried >= 956250 [set-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 200 and 300 km if span >= 21.14 and span < 31.71 [ if load-carried < 91000 [set-138kv];use 138 kV if load-carried >= 91000 and load-carried < 253750 [set-230kv];use 230 kV if load-carried >= 253750 and load-carried < 743750 [set-345kv];use 345 kV if load-carried >= 743750 [set-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if span >= 31.71 and span < 42.28 [ if load-carried < 67600 [set-138kv];use 138 kV if load-carried >= 67600 and load-carried < 188500 [set-230kv];use 230 kV if load-carried >= 188500 and load-carried < 552500 [set-345kv];use 345 kV if load-carried >= 552500 [set-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;above 400 km if span >= 42.28 [ if load-carried < 57200 [set-138kv];use 138 kV if load-carried >= 57200 and load-carried < 159500 [set-230kv];use 230 kV if load-carried >= 159500 and load-carried < 467500 [set-345kv];use 345 kV if load-carried >= 467500 [set-500kv];use 500 kV ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to pick-connection-mode if decision-strategy = "multiple-resource" [ pick-lcoe-based-connection-mode] if decision-strategy = "most-jobs" [ pick-job-based-connection-mode] if decision-strategy = "largest-inflows" [ pick-flow-based-connection-mode] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to pick-lcoe-based-connection-mode ;; In this procedure all project populations decide what is ;; cheapest for them. This procedure was called by asking the projects calculate-lcoe-dg ;Calculate how much a dg project costs calculate-lcoe-ge ;Calculate how much a ge project costs ifelse dg-cost > ge-cost ;; If it is cheaper to do ge then it decides to do that [set connection-mode "ge" set project-cost ge-cost] ;; Otherwise it does dg [set connection-mode "dg" set project-cost dg-cost] ;; If the grid extension cost is 0 then there is no grid project ;; and it must do dg. if ge-cost = 0 [set connection-mode "dg" set project-cost dg-cost] ;; If the project cost is still 0 then there are no more options for this ;; project and it is impossible for the turtle to be supplied. if project-cost = 0 [set breed unmets set color blue] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to pick-job-based-connection-mode calculate-dg-jobs ;Calculate how many jobs a dg project generates calculate-ge-jobs ;Calculate how many jobs a ge project generates ifelse dg-jobs > ge-jobs ;; If it is cheaper to do ge then it decides to do that [set connection-mode "dg" set max-jobs dg-jobs] ;; Otherwise it does dg [set connection-mode "ge" set max-jobs ge-jobs] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to pick-flow-based-connection-mode calculate-dg-flows ;Calculate how many flows a dg project generates calculate-ge-flows ;Calculate how many flows a ge project generates ifelse dg-flows > ge-flows ;; If it is better to do dg then it decides to do that [set connection-mode "dg" set max-flows dg-flows] ;; Otherwise it does dg [set connection-mode "ge" set max-flows ge-flows] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;This procedure calculates the amount of each technology used for generation and sets it in ;percentage of total generation to define the generation portfolio to calculate-generation-portfolio set solar-installed-capacity (sum [max-capacity - available-capacity] of power-plants with [technology = "solar"]) set %-solar-gen solar-installed-capacity / total-generation set %-of-solar-used 100 * solar-installed-capacity / sum [solar-potential] of patches set biomass-installed-capacity (sum [max-capacity - available-capacity] of power-plants with [technology = "biomass"]) set %-biomass-gen biomass-installed-capacity / total-generation set %-of-biomass-used 100 * biomass-installed-capacity / sum [biomass-base-potential] of patches set hydro-installed-capacity (sum [max-capacity - available-capacity] of power-plants with [technology = "hydro"]) set %-hydro-gen hydro-installed-capacity / total-generation set %-of-hydro-used 100 * hydro-installed-capacity / sum [hydro-potential] of patches end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-total-economic-inflows ;This procedure calculates the economic inflows theoretically created by the different renewable ;energy production units. The source of the economic inflows comes from literature: Buchholz, Thomas, and Izael Da Silva. ;“Potential of Distributed Wood-Based Biopower Systems Serving Basic Electricity Needs in Rural Uganda.” ;Energy for Sustainable Development 14 (2010): 56–61. Web. 15 Oct. 2012. They assume that flows from a large hydro is 0 and ;I assume it is the same in the case of mini-hydro but I need to double check the assumption. ; The results are in Million $ set total-economic-inflows (sum [max-capacity - available-capacity] of power-plants with [source = "biomass"] * 0.0368 * load-factor) + (sum [max-capacity - available-capacity] of power-plants with [source = "solar"] * 0.0091 * load-factor) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-job-years ;This procedure calculates the economic inflows theoretically created by the different renewable ;energy production units. The source of the economic inflows comes from literature: Wei, Max, Shana Patadia, ;and Daniel M. Kammen. “Putting Renewables and Energy Efficiency to Work: How Many Jobs Can the Clean Energy ;Industry Generate in the US?” Energy Policy 38 (2010): 919–931. Web. 11 Feb. 2014. set job-years ((sum [max-capacity - available-capacity] of power-plants with [source = "biomass"] * 0.21 * biomass-lifespan) + (sum [max-capacity - available-capacity] of power-plants with [source = "solar"] * 0.88 * solar-lifespan) + (sum [max-capacity - available-capacity] of power-plants with [source = "hydro"] * 0.28 * hydro-lifespan)) * 8760 * load-factor / (10 ^ 6) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This procedure counts the number of power production units in each of the counties to report-locations ask power-plants [ set location county] set Bomi-pp count power-plants with [location = "Bomi"] set Bong-pp count power-plants with [location = "Bong"] set Grand-Bassa-pp count power-plants with [location = "Grand Bassa"] set Grand-Cape-Mount-pp count power-plants with [location = "Grand Cape Mount"] set Grand-Gedeh-pp count power-plants with [location = "Grand Gedeh"] set Grand-Kru-pp count power-plants with [location = "Grand Kru"] set Lofa-pp count power-plants with [location = "Lofa"] set Margibi-pp count power-plants with [location = "Margibi"] set Maryland-pp count power-plants with [location = "Maryland"] set Montserrado-pp count power-plants with [location = "Montserrado"] set Nimba-pp count power-plants with [location = "Nimba"] set Rivercess-pp count power-plants with [location = "Rivercess"] set Sinoe-pp count power-plants with [location = "Sinoe"] set River-Gee-pp count power-plants with [location = "River Gee"] set Gbarpolu-pp count power-plants with [location = "Gbarpolu"] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-lcoe-ge ;turtle context ;; In this procedure the projects calculate their cost to connect to an ;; existing secondary grid. They have to find a socket whose network has capacity to expand set closest-socket min-one-of sockets with [open-capacity? = true] [distance myself] ifelse closest-socket != nobody ;; If they find a socket then they calculate the cost to expand that network ;; including increasing the generation capacity, creating the transmission line to the socket, ;; and upgrading the path of transmission lines to it if necessary. [set distance-to-socket distance closest-socket set possible-supplier [supplier] of closest-socket set possible-technology [technology] of closest-socket ifelse remaining-demand < [available-capacity] of possible-supplier [set possible-supply remaining-demand] [set possible-supply [available-capacity] of possible-supplier] calculate-transmission-capital-cost calculate-network-upgrade-cost ;The costs depend on the technology the project is connecting to. if possible-technology = "solar" [set ge-cost ((solar-capital * solar-required-per-kw-demand * CRFsolar) / (8760 * load-factor)) + battery-capital * CRFbatteries * storage-needed + transmission-capital-cost / (8760 * possible-supply * load-factor) + (CRFtrans * network-upgrade-cost / (8760 * possible-supply * load-factor)) + (solar-o&m / (8760 * load-factor))] if possible-technology = "biomass" [set ge-cost ((biomass-capital * CRFbiomass) / (8760 * load-factor)) + transmission-capital-cost / (8760 * possible-supply * load-factor) + (CRFtrans * network-upgrade-cost / (8760 * possible-supply * load-factor)) + (biomass-o&m / (8760 * load-factor)) + ((Pl * biomass-fuel) / (biomass-heat-content * .25 * 278 ))] ;assumes 30% efficiency for biomass and 278 is a conversion factor for Gj to kWh if possible-technology = "hydro" [set ge-cost ((hydro-capital * CRFhydro) / (8760 * load-factor)) + transmission-capital-cost / (8760 * possible-supply * load-factor) + (CRFtrans * network-upgrade-cost / (8760 * possible-supply * load-factor)) + (hydro-o&m / 8760 * load-factor ) ] ] ;; If there is no available socket then their ge-cost goes to 0 and that is dealt with ;in the pick-connection-mode procedure [set ge-cost 0] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-transmission-capital-cost ;This procedure calculates the possible transmission capital cost to the a GE project. It differs from the ;calculate-possible-transmission-capital-cost in that this procedure is calculating the cost to a possible socket and not ;to a possible patch. if distance-to-socket <= 8.45 ;if the distance is less than 80 km ;we check loadability [if possible-supply < 14500 ;this is an assumed end I need to double check [set possible-line-cost cost-of-33kv];use 33 kV if possible-supply >= 14500 and possible-supply < 156000 [set possible-line-cost cost-of-138kv];use 138 kV if possible-supply >= 156000 and possible-supply < 435000 [set possible-line-cost cost-of-230kv];use 230 kV if possible-supply >= 435000 and possible-supply < 1275000 [set possible-line-cost cost-of-345kv];use 345 kV if possible-supply >= 1275000 [set possible-line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ; between 80 and 100 km if distance-to-socket > 8.45 and distance-to-socket < 10.57 [ if possible-supply < 143000 [set possible-line-cost cost-of-138kv];use 138 kV if possible-supply >= 143000 and possible-supply < 398750 [set possible-line-cost cost-of-230kv];use 230 kV if possible-supply >= 398750 and possible-supply < 1168750 [set possible-line-cost cost-of-345kv];use 345 kV if possible-supply >= 1168750 [set possible-line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 100 and 200 km if distance-to-socket >= 10.57 and distance-to-socket < 21.14 [ if possible-supply < 117000 [set possible-line-cost cost-of-138kv];use 138 kV if possible-supply >= 117000 and possible-supply < 326250 [set possible-line-cost cost-of-230kv];use 230 kV if possible-supply >= 326250 and possible-supply < 956250 [set possible-line-cost cost-of-345kv];use 345 kV if possible-supply >= 956250 [set possible-line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 200 and 300 km if distance-to-socket >= 21.14 and distance-to-socket < 31.71 [ if possible-supply < 91000 [set possible-line-cost cost-of-138kv];use 138 kV if possible-supply >= 91000 and possible-supply < 253750 [set possible-line-cost cost-of-230kv];use 230 kV if possible-supply >= 253750 and possible-supply < 743750 [set possible-line-cost cost-of-345kv];use 345 kV if possible-supply >= 743750 [set possible-line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if distance-to-socket >= 31.71 and distance-to-socket < 42.28 [ if possible-supply < 67600 [set possible-line-cost cost-of-138kv];use 138 kV if possible-supply >= 67600 and possible-supply < 188500 [set possible-line-cost cost-of-230kv];use 230 kV if possible-supply >= 188500 and possible-supply < 552500 [set possible-line-cost cost-of-345kv];use 345 kV if possible-supply >= 552500 [set possible-line-cost cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if distance-to-socket >= 42.28 [ if possible-supply < 57200 [set possible-line-cost cost-of-138kv];use 138 kV if possible-supply >= 57200 and possible-supply < 159500 [set possible-line-cost cost-of-230kv];use 230 kV if possible-supply >= 159500 and possible-supply < 467500 [set possible-line-cost cost-of-345kv];use 345 kV if possible-supply >= 467500 [set possible-line-cost cost-of-500kv];use 500 kV ] set transmission-capital-cost (distance-to-socket * possible-line-cost * 9.46 * CRFtrans) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-network-upgrade-cost ;; In this procedure agents calculate the cost of upgrading a network ;; if it is necessary for them to do so set network-upgrade-cost 0 ask links [ set new-cost-km 0 set upgrade-cost-km 0 ] ask closest-socket [ set shortest-path-list [] set turtles-on-shortest-path-list [] set shortest-path nobody set turtles-on-shortest-path nobody set demand-on-path 0 set shortest-path-list nw:weighted-path-to supplier "span" set turtles-on-shortest-path-list nw:turtles-on-weighted-path-to supplier "span"] set shortest-path link-set [shortest-path-list] of closest-socket set turtles-on-shortest-path turtle-set [turtles-on-shortest-path-list] of closest-socket ask shortest-path [ set upgrade-load load-carried + [possible-supply] of myself if span <= 8.45 ;if the distance is less than 80 km ;we check loadability [if upgrade-load < 14500 ;this is an assumed end I need to double check [set new-cost-km cost-of-33kv];use 33 kV if upgrade-load >= 14500 and upgrade-load < 156000 [set new-cost-km cost-of-138kv];use 138 kV if upgrade-load >= 156000 and upgrade-load < 435000 [set new-cost-km cost-of-230kv];use 230 kV if upgrade-load >= 435000 and upgrade-load < 1275000 [set new-cost-km cost-of-345kv];use 345 kV if upgrade-load >= 1275000 [set new-cost-km cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ; between 80 and 100 km if span > 8.45 and span < 10.57 [ if upgrade-load < 143000 [set new-cost-km cost-of-138kv];use 138 kV if upgrade-load >= 143000 and upgrade-load < 398750 [set new-cost-km cost-of-230kv];use 230 kV if upgrade-load >= 398750 and upgrade-load < 1168750 [set new-cost-km cost-of-345kv];use 345 kV if upgrade-load >= 1168750 [set new-cost-km cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 100 and 200 km if span >= 10.57 and span < 21.14 [ if upgrade-load < 117000 [set new-cost-km cost-of-138kv];use 138 kV if upgrade-load >= 117000 and upgrade-load < 326250 [set new-cost-km cost-of-230kv];use 230 kV if upgrade-load >= 326250 and upgrade-load < 956250 [set new-cost-km cost-of-345kv];use 345 kV if upgrade-load >= 956250 [set new-cost-km cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 200 and 300 km if span >= 21.14 and span < 31.71 [ if upgrade-load < 91000 [set new-cost-km cost-of-138kv];use 138 kV if upgrade-load >= 91000 and upgrade-load < 253750 [set new-cost-km cost-of-230kv];use 230 kV if upgrade-load >= 253750 and upgrade-load < 743750 [set new-cost-km cost-of-345kv];use 345 kV if upgrade-load >= 743750 [set new-cost-km cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if span >= 31.71 and span < 42.28 [ if upgrade-load < 67600 [set new-cost-km cost-of-138kv];use 138 kV if upgrade-load >= 67600 and upgrade-load < 188500 [set new-cost-km cost-of-230kv];use 230 kV if upgrade-load >= 188500 and upgrade-load < 552500 [set new-cost-km cost-of-345kv];use 345 kV if upgrade-load >= 552500 [set new-cost-km cost-of-500kv];use 500 kV ] ;otherwise we must use higher voltage lines ;but we must check the loadability of the lines ;between 300 and 400 km if span >= 42.28 [ if upgrade-load < 57200 [set new-cost-km cost-of-138kv];use 138 kV if upgrade-load >= 57200 and upgrade-load < 159500 [set new-cost-km cost-of-230kv];use 230 kV if upgrade-load >= 159500 and upgrade-load < 467500 [set new-cost-km cost-of-345kv];use 345 kV if upgrade-load >= 467500 [set new-cost-km cost-of-500kv];use 500 kV ] ifelse cost-km < new-cost-km [set upgrade-cost-km new-cost-km - cost-km] [set upgrade-cost-km 0]] set network-upgrade-cost sum [upgrade-cost-km * span * 9.46] of shortest-path end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to reset-base-potentials ask patches with [is-string? county] [ set biomass-potential biomass-base-potential set solar-potential solar-base-potential set hydro-potential hydro-base-potential set biomass-shed (patch-set patches with [pxcor >= ([pxcor] of myself - 2) and pxcor <= ([pxcor] of myself + 2) and pycor >= ([pycor] of myself - 2) and pycor <= ([pycor] of myself + 2)]) set aggregated-biomass-potential sum [biomass-base-potential] of biomass-shed if aggregated-biomass-potential > solar-potential and aggregated-biomass-potential > hydro-potential [set largest-potential aggregated-biomass-potential set largest-potential-type "biomass" set source "biomass"] if solar-potential > aggregated-biomass-potential and solar-potential > hydro-potential [set largest-potential solar-potential set largest-potential-type "solar" set source "solar"] if hydro-potential > aggregated-biomass-potential and hydro-potential > solar-potential [set largest-potential hydro-potential set largest-potential-type "hydro" set source "hydro"] set developed? false ;Establish that in the begining all patches in Liberia have no power plants ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to pick-next-project ;; In this procedure the model picks the project it will build according to the decision ;; strategies given by the user. if decision-strategy = "multiple-resource" [ ask projects [ pick-connection-mode] ;All mode pick the cheapes project cost set expansion-node min-one-of projects [project-cost]] if decision-strategy = "largest-resource" [ ifelse any? sockets with [open-capacity? = true ] [ ask projects [ calculate-lcoe-ge] ;All Projects calculate their dg cost and their respective sockets set expansion-node min-one-of projects [distance-to-socket] ask expansion-node [set connection-mode "ge"] ] [set expansion-node one-of projects ask expansion-node [set connection-mode "dg"] ] ] if decision-strategy = "largest-population" [ ifelse any? sockets with [open-capacity? = true ] [ ask projects [ calculate-lcoe-ge] ;All Projects calculate their dg cost and their respective sockets set expansion-node min-one-of projects [distance-to-socket] ask expansion-node [set connection-mode "ge"] ] [set expansion-node one-of projects ask expansion-node [set connection-mode "dg"] ] ] if decision-strategy = "most-jobs" [ ask projects [ pick-connection-mode] ;All mode pick the cheapes project cost set expansion-node max-one-of projects [max-jobs]] if decision-strategy = "largest-inflows" [ ask projects [ pick-connection-mode] ;All mode pick the cheapes project cost set expansion-node max-one-of projects [max-flows]] ;ifelse grid-extension = false ;; If we are not focusing on grid-extension then it picks the cheapest cost project as the expansion-node ; [set expansion-node min-one-of projects [project-cost]] ;; If we are focusing on ge then it picks the cheapest "ge" project as the expansion node ;[set expansion-node min-one-of projects with [ge-cost > 0] [distance-to-socket] ; if expansion-node != nobody ;[ask expansion-node [set connection-mode "ge"]] ;if expansion-node = nobody ;; If there is nobody that fits that then it picks the cheapest one with dg as the expansion node. ;[set expansion-node min-one-of projects with [connection-mode = "dg"] [project-cost]]] ;if is-unmet? expansion-node [ ; set expansion-node nobody ;go ;] ;; If the expansion-node is an unmet then the model goes back to go procedure where the lists of projects get updated ;; so the model can stop. end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;expansion-node was asked to to grow-network ;; Here the model picks what kind of project to create ifelse [connection-mode] of expansion-node = "ge" [connect-project] ;; If the expansion-node is grid extension regardless of the ;; decision strategy it will get made so the project is created [ if decision-strategy = "multiple-resource" [ if best-patch != nobody [ask best-patch [ create-power-plant] ask expansion-node [ set closest-socket max-one-of power-plants [who]] connect-project] ] if decision-strategy = "largest-resource" [ pick-project-patch if project-patch != nobody [initiate-grid] ] if decision-strategy = "largest-population" [ pick-project-patch if project-patch != nobody [initiate-grid] ] if decision-strategy = "most-jobs" [ if best-patch != nobody [ask best-patch [ create-power-plant] ask expansion-node [ set closest-socket max-one-of power-plants [who]] connect-project] ] if decision-strategy = "largest-inflows" [ if best-patch != nobody [ask best-patch [ create-power-plant] ask expansion-node [ set closest-socket max-one-of power-plants [who]] connect-project] ] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to update-potentials ;The patches with developed = false were asked to perform this set aggregated-biomass-potential sum [biomass-potential] of biomass-shed if aggregated-biomass-potential > solar-potential and aggregated-biomass-potential > hydro-potential [set largest-potential aggregated-biomass-potential set largest-potential-type "biomass" set source "biomass"] if solar-potential > aggregated-biomass-potential and solar-potential > hydro-potential [set largest-potential solar-potential set largest-potential-type "solar" set source "solar"] if hydro-potential > aggregated-biomass-potential and hydro-potential > solar-potential [set largest-potential hydro-potential set largest-potential-type "hydro" set source "hydro"] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to run-verification-experiment open-files load-the-world set simulation 1 let subsimulation 1 while [simulation < 3] [foreach [ "largest-resource" "largest-population" "most-jobs" "equal-development" "largest-inflows" "central-resource"] [set decision-strategy ? foreach [true false] [setup while [any? projects] [go print-verification-data print-line-verification-data print-agent-verification-data print-patch-verification-data ] set subsimulation subsimulation + 1 ] print subsimulation ] print simulation set simulation simulation + 1] close-files end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to open-files ;;Open general verification files file-open "1model-verification1.txt" file-print (word "Start " date-and-time ";") file-print (word "") file-print (word "simulation; decision-strategy; grid-extension; demand-per-person;" "cost-of-33kv; cost-of-138kv; cost-of-230kv; cost-of-345kv; cost-of-500kv;" "total-population; average-population; discount-rate; taxes-insurance;" "CRFsolar; CRFbiomass; CRFhydro; CRFtrans; pl;" "solar-capital; solar-o&m; hydro-capital; hydro-o&m; hydro-duty-factor; biomass-capital; biomass-o&m; biomass-duty-factor; biomass-fuel; biomass-heat-rate;" "solar-lifespan; biomass-lifespan; hydro-lifespan; transmission-lifespan;" "overall-lcoe; ticks; project-patch; expansion-node; %-unelectrified;" "electrification-method; total-plant-investment; total-transmission-investment; initial-population; total-generation;" "%-33kv; %-138kv; %-230kv; %-345kv; %-500kv;" "%-right-of-way-area; solar-installed-capacity; biomass-installed-capacity; hydro-installed-capacity;" "%-solar-gen; %-biomass-gen; %-hydro-gen;" "%-of-solar-used; %-of-biomass-used; %-of-hydro-used;" "total-economic-inflows; job-years; secondary-grids; dg-mix;" "total-power-plants; turn; target-county;" "bomi-biomass; bomi-patches; bomi-average-biomass;" "bong-biomass; bong-patches; bong-average-biomass;" "grand-bassa-biomass;grand-bassa-patches;grand-bassa-average-biomass;" "grand-cape-mount-biomass; grand-cape-mount-patches; grand-cape-mount-average-biomass;" "grand-gedeh-biomass; grand-gedeh-patches; grand-gedeh-average-biomass;" "grand-kru-biomass; grand-kru-patches;grand-kru-average-biomass;" "lofa-biomass;lofa-patches;lofa-average-biomass;" "margibi-biomass;margibi-patches;margibi-average-biomass;" "maryland-biomass;maryland-patches;maryland-average-biomass;" "montserrado-biomass;montserrado-patches;montserrado-average-biomass;" "nimba-biomass;nimba-patches;nimba-average-biomass;" "rivercess-biomass;rivercess-patches;rivercess-average-biomass;" "sinoe-biomass;sinoe-patches;sinoe-average-biomass;" "river-gee-biomass;river-gee-patches;river-gee-average-biomass;" "gbarpolu-biomass; gbarpolu-patches;gbarpolu-average-biomass;" "Bomi-pp; Bong-pp; Grand-Bassa-pp; Grand-Cape-Mount-pp; Grand-Gedeh-pp; Grand-Kru-pp; Lofa-pp; Margibi-pp; Maryland-pp;" "Montserrado-pp; Nimba-pp; Rivercess-pp; Sinoe-pp; River-Gee-pp; Gbarpolu-pp;" "p-largest-potential;p-central ;biggest-population ;p-biggest-population ; p-jobs ;p-inflows ; lowest-project-cost ; p-lowest-cost ; " "lowest-cost ;lowest-dg-project ;lowest-dg-cost ;lowest-dg-best-patch ; lowest-ge-project ;lowest-ge-cost ;lowest-ge-best-patch ;" "most-recent-plant ;most-recent-patch-developed ;") ;;Open line verification files file-open "1line-verification1.txt" file-print (word "Start " date-and-time ";") file-print (word "simulation;ticks;link-id;span;grade;cost-km;new-cost-km; upgrade-cost-km; load-carried; upgrade-load") file-print (word "") ;;Open agent verification files file-open "1agent-verification1.txt" file-print (word "Start " date-and-time ";") file-print (word "simulation;ticks; who; name; in-county; baseline-people; people; original-demand; remaining-demand; closest-socket;" "distance-to-socket; possible-supplier; supplier; possible-technology; technology; ge-cost; dg-cost; project-cost;" "best-patch; dg-distance; connection-mode; open-capacity?; transmission-capital-cost; network-upgrade-cost; shortest-path;" "shortest-path-list; turtles-on-shortest-path; turtles-on-shortest-path-list;demand-on-path;" ) file-print (word "") ;;Open agent verification files file-open "1patch-verification1.txt" file-print (word "Start " date-and-time ";") file-print (word "simulation;ticks; xcor; ycor; baseline-potential; largest-potential; developed?; distance-list;" "demand-list;ci-list; centrality; resource-centrality; dg-solar-cost-per-kw; dg-biomass-cost-per-kw;" "dg-hydro-cost-per-kw; dg-cost-per-kw; possible-transmission-cost; county; biomass-shed; biomass-potential;" "aggregated-biomass-potential;solar-potential;hydro-potential;biomass-base-potential; solar-base-potential;" "hydro-base-potential; largest-potential-type;source; solar-inflows; biomass-inflows;hydro-inflows;project-inflows;" "solar-jobs; biomass-jobs;hydro-jobs;project-jobs;" ) file-print (word "") end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to close-files file-open "1model-verification1.txt" file-print (word "End " date-and-time) file-print (word "") file-open "1line-verification1.txt" file-print (word "End " date-and-time) file-print (word "") file-open "1agent-verification1.txt" file-print (word "End " date-and-time) file-print (word "") file-open "1patch-verification1.txt" file-print (word "End " date-and-time) file-print (word "") file-close-all end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to print-verification-data file-open "1model-verification1.txt" file-print (word simulation";"decision-strategy";" grid-extension";" peak-power-demand";" cost-of-33kv";" cost-of-138kv";" cost-of-230kv";" cost-of-345kv";" cost-of-500kv";" total-population";" average-population";" discount-rate";" taxes-insurance";" CRFsolar";" CRFbiomass";" CRFhydro";" CRFtrans";" pl";" solar-capital";" solar-o&m";" hydro-capital";" hydro-o&m";" hydro-duty-factor";" biomass-capital";" biomass-o&m";" biomass-duty-factor";" biomass-fuel";" biomass-heat-content";" solar-lifespan";" biomass-lifespan";" hydro-lifespan";" transmission-lifespan";" overall-lcoe";" ticks ";" project-patch";" expansion-node";" %-unelectrified";" electrification-method";" total-plant-investment";" total-transmission-investment";" initial-population";" total-generation";" %-33kv";" %-138kv";" %-230kv";" %-345kv";" %-500kv";" %-right-of-way-area";" solar-installed-capacity";" biomass-installed-capacity";" hydro-installed-capacity";" %-solar-gen";" %-biomass-gen";" %-hydro-gen";" %-of-solar-used";" %-of-biomass-used";" %-of-hydro-used";" total-economic-inflows";" job-years";" secondary-grids";" dg-mix";" total-power-plants";" turn";" target-county";" bomi-biomass";" bomi-patches";"bomi-average-biomass";" bong-biomass";"bong-patches";" bong-average-biomass";" grand-bassa-biomass";" grand-bassa-patches";" grand-bassa-average-biomass";" grand-cape-mount-biomass";" grand-cape-mount-patches";" grand-cape-mount-average-biomass";" grand-gedeh-biomass";" grand-gedeh-patches";" grand-gedeh-average-biomass";" grand-kru-biomass";" grand-kru-patches";" grand-kru-average-biomass";" lofa-biomass";"lofa-patches";"lofa-average-biomass";" margibi-biomass";" margibi-patches";" margibi-average-biomass";" maryland-biomass";" maryland-patches";" maryland-average-biomass";" montserrado-biomass";" montserrado-patches";" montserrado-average-biomass";" nimba-biomass";" nimba-patches";" nimba-average-biomass";" rivercess-biomass";" rivercess-patches";" rivercess-average-biomass";" sinoe-biomass";" sinoe-patches";" sinoe-average-biomass";" river-gee-biomass";" river-gee-patches";" river-gee-average-biomass";" gbarpolu-biomass";" gbarpolu-patches";" gbarpolu-average-biomass";" Bomi-pp";" Bong-pp";" Grand-Bassa-pp";" Grand-Cape-Mount-pp";" Grand-Gedeh-pp";" Grand-Kru-pp";" Lofa-pp";" Margibi-pp";" Maryland-pp";" Montserrado-pp";" Nimba-pp";" Rivercess-pp";" Sinoe-pp";"River-Gee-pp";" Gbarpolu-pp";" p-largest-potential";" p-central";" biggest-population";" p-biggest-population";" p-jobs";" p-inflows";" lowest-project-cost";" p-lowest-cost";" lowest-cost";" lowest-dg-project";" lowest-dg-cost";" lowest-dg-best-patch ";" lowest-ge-project";" lowest-ge-cost ";" lowest-ge-best-patch ";" most-recent-plant";" most-recent-patch-developed ";") end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to print-line-verification-data file-open "1line-verification1.txt" foreach line-list [ file-print (word simulation";"ticks ";" ?";" [span] of ? ";" [grade] of ?";" [cost-km] of ? ";" [new-cost-km] of ? ";" [upgrade-cost-km] of ? ";" [load-carried] of ? ";" [upgrade-load] of ?";")] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to print-agent-verification-data file-open "1agent-verification1.txt" ask agent-v [ file-print (word simulation";"ticks ";" who";" name";" in-county ";" baseline-people ";" people ";" original-demand";" remaining-demand ";" closest-socket";" distance-to-socket";" possible-supplier";" supplier ";" possible-technology ";" technology ";" ge-cost";" dg-cost ";" project-cost";" best-patch ";" dg-distance";" connection-mode";" open-capacity? ";" transmission-capital-cost";" network-upgrade-cost ";" shortest-path";" shortest-path-list";" turtles-on-shortest-path" ;" turtles-on-shortest-path-list";" demand-on-path";" )] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to print-patch-verification-data file-open "1patch-verification1.txt" file-print (word simulation";"ticks";" [pxcor] of patch-v";" [pycor] of patch-v";" [baseline-potential] of patch-v";" [largest-potential] of patch-v ";" [developed?] of patch-v";" [distance-list] of patch-v";" [demand-list] of patch-v ";"[ci-list] of patch-v";" [centrality] of patch-v";" [resource-centrality] of patch-v";" [dg-solar-cost-per-kw] of patch-v ";" [dg-biomass-cost-per-kw] of patch-v";" [dg-hydro-cost-per-kw] of patch-v";" [dg-cost-per-kw] of patch-v";" [possible-transmission-cost] of patch-v";" [county] of patch-v";" [biomass-shed] of patch-v";" [biomass-potential] of patch-v";" [aggregated-biomass-potential] of patch-v";" [solar-potential] of patch-v";" [hydro-potential] of patch-v";" [biomass-base-potential] of patch-v";" [solar-base-potential] of patch-v";"[hydro-base-potential] of patch-v";" [largest-potential-type] of patch-v";" [source] of patch-v";" [solar-inflows] of patch-v";" [biomass-inflows] of patch-v";" [hydro-inflows] of patch-v";"[project-inflows] of patch-v";" [solar-jobs] of patch-v";" [biomass-jobs] of patch-v";" [hydro-jobs] of patch-v";" [project-jobs] of patch-v";" ) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to run-experiment [ test ] file-open (word test ".txt") open-experiment-file load-the-world set simulation 1 let subsimulation 1 foreach [150 190 200 250 300 350 400] [set peak-power-demand ? foreach [0.1 0.2 0.3 0.4 0.5] [ set base-load ? foreach [ "multiple-resource" "largest-resource" "largest-population" "most-jobs" "largest-inflows" ] [set decision-strategy ? set grid-extension true setup while [any? projects] [go] print-experiment-data print (word subsimulation "-" simulation) set subsimulation subsimulation + 1 ]]] close-files end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to open-experiment-file ;;Open general verification files file-print (word "Start " date-and-time ";") file-print (word "") file-print (word "simulation; decision-strategy; grid-extension;" "overall-lcoe; ticks;total-economic-inflows; job-years; secondary-grids; dg-mix;" "peak-power-demand; morning-peak; duration-of-morning-peak; evening-peak; duration-of-evening-peak; base-load; duration-of-base-load;" "cost-of-33kv; cost-of-138kv; cost-of-230kv; cost-of-345kv; cost-of-500kv;" "total-population; average-population; discount-rate; taxes-insurance;" "CRFsolar; CRFbatteries; CRFbiomass; CRFhydro; CRFtrans; pl;" "solar-capital; solar-o&m; battery-capital; area-for-solar; panel-efficiency;" "hydro-capital; hydro-o&m; hydro-duty-factor; biomass-capital; biomass-o&m; biomass-duty-factor; biomass-fuel; biomass-heat-rate;" "solar-lifespan; biomass-lifespan; hydro-lifespan; transmission-lifespan;" "project-patch; expansion-node; %-unelectrified;" "electrification-method; total-plant-investment; total-transmission-investment; initial-population; total-generation;" "%-33kv; %-138kv; %-230kv; %-345kv; %-500kv; total transmission length" "%-right-of-way-area; solar-installed-capacity; biomass-installed-capacity; hydro-installed-capacity;" "%-solar-gen; %-biomass-gen; %-hydro-gen;" "%-of-solar-used; %-of-biomass-used; %-of-hydro-used;" "total-power-plants; average-generator-size" "p-largest-potential;p-central ;biggest-population ;p-biggest-population ; p-jobs ;p-inflows ; lowest-project-cost ; p-lowest-cost ; " "lowest-cost ;lowest-dg-project ;lowest-dg-cost ;lowest-dg-best-patch ; lowest-ge-project ;lowest-ge-cost ;lowest-ge-best-patch ;" "most-recent-plant ;most-recent-patch-developed; generator-sizes;") file-print (word "") end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to print-experiment-data file-print (word simulation";" decision-strategy";" grid-extension";" overall-lcoe";" ticks";"total-economic-inflows";" job-years";" secondary-grids";" dg-mix";" peak-power-demand";" morning-peak";" duration-morning-peak";" evening-peak";" duration-evening-peak";" base-load";" duration-base-load";" cost-of-33kv";" cost-of-138kv";" cost-of-230kv";" cost-of-345kv";" cost-of-500kv";" total-population";" average-population";" discount-rate";" taxes-insurance";" CRFsolar";" CRFbatteries";" CRFbiomass";" CRFhydro";" CRFtrans";" pl";" solar-capital";" solar-o&m";" battery-capital";" area-for-solar";" panel-efficiency";" hydro-capital";" hydro-o&m";" hydro-duty-factor";" biomass-capital";" biomass-o&m";" biomass-duty-factor";" biomass-fuel";" biomass-heat-content";" solar-lifespan";" biomass-lifespan";" hydro-lifespan";" transmission-lifespan";" project-patch";" expansion-node";" %-unelectrified";" electrification-method";" total-plant-investment";" total-transmission-investment";" initial-population";" total-generation";" %-33kv";" %-138kv";" %-230kv";" %-345kv";" %-500kv";" (sum [span] of links * 9.46 )";" %-right-of-way-area";" solar-installed-capacity";" biomass-installed-capacity";" hydro-installed-capacity";" %-solar-gen";" %-biomass-gen";" %-hydro-gen";" %-of-solar-used";" %-of-biomass-used";" %-of-hydro-used";" total-power-plants";" average-generator-size ";" p-largest-potential";" p-central";" biggest-population";" p-biggest-population";" p-jobs";" p-inflows";" lowest-project-cost";" p-lowest-cost";" lowest-cost";" lowest-dg-project";" lowest-dg-cost";" lowest-dg-best-patch";" lowest-ge-project";" lowest-ge-cost";" lowest-ge-best-patch ";" most-recent-plant";" most-recent-patch-developed";" [generation-size] of power-plants ";" ) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-dg-jobs ; This procedure is where populations calculate their decentralized generation cost. ; Each population calculates what would be the cost to establish a production unit in each ; patch available while also considering its own demand the available potential in the patch ; and the distance to the patch. The turtle sets the patch that results in the lowest lcoe cost ; as its best patch and the technology in the patch as its possible source. ask patches with [developed? = false] [calculate-possible-transmission-capital-cost if dg-solar-jobs > dg-hydro-jobs and dg-solar-jobs > dg-biomass-jobs [ set patch-possible-jobs dg-solar-jobs set source "solar"] if dg-biomass-jobs > dg-hydro-jobs and dg-biomass-jobs > dg-solar-jobs [ set patch-possible-jobs dg-biomass-jobs set source "biomass"] if dg-hydro-jobs > dg-solar-jobs and dg-hydro-jobs > dg-biomass-jobs [ set patch-possible-jobs dg-hydro-jobs set source "hydro"] ] set best-patch max-one-of patches with [developed? = false] [patch-possible-jobs] ifelse best-patch != nobody ;; If the turtle did find a patch then that patch cost becomes its dg-cost [set dg-jobs [patch-possible-jobs] of best-patch set technology [source] of best-patch] ;; If it didnt then the cost is 0 which is dealt with in the pick-connection-mode procedure [set dg-jobs 0] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-ge-jobs ;; In this procedure the projects calculate their cost to connect to an ;; existing secondary grid. They have to find a socket whose network has capacity to expand set closest-socket min-one-of sockets with [open-capacity? = true] [distance myself] ifelse closest-socket != nobody ;; If they find a socket then they calculate the cost to expand that network ;; including increasing the generation capacity, creating the transmission line to the socket, ;; and upgrading the path of transmission lines to it if necessary. [set distance-to-socket distance closest-socket set possible-supplier [supplier] of closest-socket set possible-technology [technology] of closest-socket ifelse remaining-demand < [available-capacity] of possible-supplier [set possible-supply remaining-demand] [set possible-supply [available-capacity] of possible-supplier] calculate-transmission-capital-cost calculate-network-upgrade-cost ;The costs depend on the technology the project is connecting to. if possible-technology = "solar" [set ge-jobs (solar-job-factor * possible-supply * load-factor * 8760) / (possible-supply * solar-capital * solar-required-per-kw-demand + possible-supply * storage-needed * battery-capital + (transmission-capital-cost / crftrans) + network-upgrade-cost) ] if possible-technology = "biomass" [set ge-jobs (biomass-job-factor * possible-supply * load-factor * 8760) / (possible-supply * biomass-capital + (transmission-capital-cost / crftrans) + network-upgrade-cost) ] if possible-technology = "hydro" [set ge-jobs (hydro-job-factor * possible-supply * load-factor * 8760) / (possible-supply * hydro-capital + (transmission-capital-cost / crftrans) + network-upgrade-cost) ] ] ;; If there is no available socket then their ge-cost goes to 0 and that is dealt with ;in the pick-connection-mode procedure [set ge-jobs 0] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-dg-flows ; This procedure is where populations calculate their decentralized generation cost. ; Each population calculates what would be the cost to establish a production unit in each ; patch available while also considering its own demand the available potential in the patch ; and the distance to the patch. The turtle sets the patch that results in the lowest lcoe cost ; as its best patch and the technology in the patch as its possible source. ask patches with [developed? = false] [calculate-possible-transmission-capital-cost if dg-solar-flows > dg-hydro-flows and dg-solar-flows > dg-biomass-flows [ set patch-possible-flows dg-solar-flows set source "solar"] if dg-biomass-flows > dg-hydro-flows and dg-biomass-flows > dg-solar-flows [ set patch-possible-flows dg-biomass-flows set source "biomass"] if dg-hydro-flows > dg-solar-flows and dg-hydro-flows > dg-biomass-flows [ set patch-possible-flows dg-hydro-flows set source "hydro"] ] set best-patch max-one-of patches with [developed? = false] [patch-possible-flows] ifelse best-patch != nobody ;; If the turtle did find a patch then that patch cost becomes its dg-cost [set dg-flows [patch-possible-flows] of best-patch set technology [source] of best-patch] ;; If it didnt then the cost is 0 which is dealt with in the pick-connection-mode procedure [set dg-flows 0] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to calculate-ge-flows ;; In this procedure the projects calculate their cost to connect to an ;; existing secondary grid. They have to find a socket whose network has capacity to expand set closest-socket min-one-of sockets with [open-capacity? = true] [distance myself] ifelse closest-socket != nobody ;; If they find a socket then they calculate the cost to expand that network ;; including increasing the generation capacity, creating the transmission line to the socket, ;; and upgrading the path of transmission lines to it if necessary. [set distance-to-socket distance closest-socket set possible-supplier [supplier] of closest-socket set possible-technology [technology] of closest-socket ifelse remaining-demand < [available-capacity] of possible-supplier [set possible-supply remaining-demand] [set possible-supply [available-capacity] of possible-supplier] calculate-transmission-capital-cost calculate-network-upgrade-cost ;The costs depend on the technology the project is connecting to. if possible-technology = "solar" [set ge-flows (solar-economic-factor * possible-supply * load-factor * 8760) / (possible-supply * solar-capital * solar-required-per-kw-demand + possible-supply * storage-needed * battery-capital + transmission-capital-cost + network-upgrade-cost) ] if possible-technology = "biomass" [set ge-flows (biomass-economic-factor * possible-supply * load-factor * 8760) / (possible-supply * biomass-capital + transmission-capital-cost + network-upgrade-cost) ] if possible-technology = "hydro" [set ge-flows (hydro-economic-factor * possible-supply * load-factor * 8760) / (possible-supply * hydro-capital + transmission-capital-cost + network-upgrade-cost) ] ] ;; If there is no available socket then their ge-cost goes to 0 and that is dealt with ;in the pick-connection-mode procedure [set ge-flows 0] end
There is only one version of this model, created over 8 years ago by Jose Alfaro.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
BABSTER.png | preview | Preview for 'BABSTER' | over 8 years ago, by Jose Alfaro | Download |
This model does not have any ancestors.
This model does not have any descendants.