Matrix Example

Matrix Example preview image

1 collaborator

Uri_dolphin3 Uri Wilensky (Author)

Tags

ccl 

Tagged by Modeling Commons System almost 13 years ago

code example 

Tagged by Reuven M. Lerner almost 12 years ago

Model group CCL | Visible to everyone | Changeable by group members (CCL)
Model was written in NetLogo 5.0.4 • Viewed 1508 times • Downloaded 97 times • Run 0 times
Download the 'Matrix Example' modelDownload this modelEmbed this model

Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)


Comments and Questions

Please start the discussion about this model! (You'll first need to log in.)

Click to Run Model

extensions [ matrix ]

to setup
  clear-all

  let m1 matrix:from-column-list [[1 4 7][2 5 8][3 6 9]] ; 3x3 matrix
  let m2 matrix:from-row-list [[0 0 0][1 1 1][2 2 2][3 3 3]] ; 4x3 matrix
  let m3 matrix:make-identity 2 ; 2x2 identity matrix
  let m4 matrix:make-constant 5 1 100 ; 5x1 matrix, containing 100 in each entry

  output-print "m1"
  output-print m1
  output-print "m2"
  output-print m2
  output-print "m3"
  output-print m3
  output-print "m4"
  output-print m4

  output-print matrix:get m1 1 2   ; =>  (row 1, column 2), result is 6

  let mRef m2              ; mRef is another reference to the same matrix as m2
  let mCopy matrix:copy m2 ; => mCopy = new copy, not a reference to m2!

  matrix:set m2 0 1 9      ; Note mCopy remains unchanged, but m2 and mRef change

  output-print "m2 after matrix:set m2 0 1 9"
  output-print m2 ; => matrix: [[0 9 0][1 1 1][2 2 2][3 3 3]]
  output-print "mRef after matrix:set m2 0 1 9"
  output-print mRef ; same as above
  output-print "mCopy after matrix:set m2 0 1 9"
  output-print mCopy ; different -- no 9 in the first row.

  output-print "the dimensions of m4"
  output-print matrix:dimensions m4 ; => [5,1]
  output-print "m1 to a row list"
  output-print matrix:to-row-list m1 ; => [[1 2 3] [4 5 6] [7 8 9]]
  output-print "m4 to a column list"
  output-print matrix:to-column-list m4 ; => [[100][100][100][100][100]]

  let m5 matrix:plus-scalar m3 1
  output-print "m5 = m3 + scalar 1"
  output-print m5 ; => matrix:  [[2 1][1 2]]

  output-print "m3 + m5"
  output-print matrix:plus m3 m5 ; => [[3 1][1 3]]

  output-print "m5 x scalar 10"
  output-print matrix:times-scalar m5 10 ; => [[20 10][10 20]]
  output-print "matrix:times [[1 2][3 4]] [[0 1][-1 0]]"
  output-print matrix:times (matrix:from-row-list [[1 2][3 4]])
    (matrix:from-row-list [[0 1][-1 0]])  ; => {{matrix:  [ [ -2 1 ][ -4 3 ] ]}}

  output-print "matrix:times-element-wise [[1 2][3 4]] [[0 1][-1 0]]"
  output-print matrix:times-element-wise (matrix:from-row-list [[1 2][3 4]])
    (matrix:from-row-list [[0 1][-1 0]])  ; => {{matrix:    [[0 2][-3 0] ]}}

  output-print "matrix:inverse [[2 2][2 0]]"
  output-print matrix:inverse (matrix:from-row-list [[2 2][2 0]])  ; => {{matrix:  [ [ 0 0.5 ][ 0.5 -0.5 ] ]}}
  carefully [
    output-print matrix:inverse matrix:from-row-list [[0 0] [0 0]]
  ][
    output-print "Can't invert matrix: [[0 0] [0 0]]!"
  ]

  output-print "matrix:transpose m2"
  output-print matrix:transpose m2 ; => matrix: [[0 1 2 3][9 1 2 3][0 1 2 3]]
  output-print "matrix:submatrix m1 0 1 2 3"
  output-print matrix:submatrix m1 0 1 2 3 ; matrix, rowStart, colStart, rowEnd, colEnd
                                           ; rows from 0 (inclusive) to 2 (exclusive),
                                           ; columns from 1 (inclusive) to 3 (exclusive)
                                           ; => matrix: [[2 3][5 6]]
  output-print "matrix:get-row m1 2"
  output-print matrix:get-row m1 1         ; puts the second row of m1 (starting from 0) in a simple
                                           ; NetLogo list.  => [4 5 6]
  output-print "matrix:get-column m1 2"
  output-print matrix:get-column m1 1      ; puts the second column of m1 (starting from 0) in a simple
                                           ; NetLogo list.  => [2 5 8]

  output-print "create a new matrix m6 from row list [[0 0 0][1 1 1][2 2 2][3 3 3]]"
  let m6 matrix:from-row-list [[0 0 0][1 1 1][2 2 2][3 3 3]] ; 4x3 matrix
  output-print m6
  output-print "matrix:set-row m6 1 [20 21 22]"
  matrix:set-row m6 1 [20 21 22]  ; => [[0 0 0][20 21 22][2 2 2][3 3 3]]
  output-print m6
  output-print "matrix:set-column m6 2 [10 11 12 13]"
  matrix:set-column m6 2 [10 11 12 13]  ; => [[0 0 10][20 21 11][2 2 12][3 3 13]]
  output-print m6
  output-print "matrix:swap-rows m6 1 2"
  matrix:swap-rows m6 1 2  ; => [[0 0 10][2 2 12][20 21 11][3 3 13]]
  output-print m6
  output-print "matrix:swap-columns m6 2 0"
  matrix:swap-columns m6 2 0  ; => [[10 0 0][12 2 2][11 21 20][13 3 3]]
  output-print m6

  output-print "matrix:real-eigenvalues m5"
  ; recall m5 = [[2 1][1 2]]
  output-print matrix:real-eigenvalues m5 ; => [1.0000000000000002 3] NOTE: accuracy not perfect.
  output-print "matrix:imaginary-eigenvalues m5"
  output-print matrix:imaginary-eigenvalues m5 ; => [ 0 0 ]
  output-print "matrix:eigenvectors m5"
  output-print matrix:eigenvectors m5 ; => matrix:  [[0.707... 0.707...][-0.707... 0.707...]] (.707... = sqrt(2)/2 )

  let A matrix:from-row-list [[1 2][3 4]]
  let B matrix:from-row-list [[-2 1][-4 3]]
  output-print "matrix:solve [[1 2][3 4]] [[-2 1][-4 3]]"
  output-print matrix:solve A B ; => [[0 1][-1 0]]
                                ;  Solve is sort of like matrix division.
                                ;  That is, it tries to find matrix X such that  A * X = B.
                                ;  It gives a "least-squares" solution, if no perfect solution exists.

  output-print "matrix:set-and-report m1 2 2 0"
  output-print matrix:set-and-report m1 2 2 0  ;; m1 is unchanged, a new matrix is reported.
  output-print "m1 is unchanged"
  output-print m1
  set m1 matrix:set-and-report m1 2 2 0        ;; can also change m1 itself, using the reporter.

  output-print "matrix:forecast-linear-growth [20 25 28 32 35 39]  => ?? linear growth rate"
  output-print matrix:forecast-linear-growth [20 25 28 32 35 39]  ; a linear extrapolation of the next item in the list.

  output-print "matrix:forecast-compound-growth [20 25 28 32 35 39] => ~13.7% compound growth rate"
  output-print matrix:forecast-compound-growth [20 25 28 32 35 39]
  output-print "matrix:forecast-compound-growth [2 2.2 2.42 2.662 2.9282] => 10.0% compound growth rate"
  output-print matrix:forecast-compound-growth [2 2.2 2.42 2.662 2.9282]
  output-print "matrix:forecast-compound-growth [4 3.6 3.24 2.916 2.6244] => minus 10.0% compound growth rate"
  output-print matrix:forecast-compound-growth [4 3.6 3.24 2.916 2.6244]

  output-print "matrix:forecast-continuous-growth [20 25 28 32 35 39] => ~12.8% continuous growth rate"
  output-print matrix:forecast-continuous-growth [20 25 28 32 35 39]
  output-print "matrix:forecast-continuous-growth [2 2.2 2.42 2.662 2.9282] => ~9.5% continuous growth rate"
  output-print matrix:forecast-continuous-growth [2 2.2 2.42 2.662 2.9282] ; a compound growth extrapolation of the next item in the list.
  output-print "matrix:forecast-continuous-growth [4 3.6 3.24 2.916 2.6244] => ~ minus 10.5% continuous growth rate"
  output-print matrix:forecast-continuous-growth [4 3.6 3.24 2.916 2.6244]

  output-print "matrix:regress matrix:from-column-list [[2 4 5 8 10] [3 4 3 7 8] [2 3 5 8 9]]"
  output-print matrix:regress matrix:from-column-list [[2 4 5 8 10] [3 4 3 7 8] [2 3 5 8 9]]
  output-print "matrix:regress matrix:from-row-list [[2 3 2] [4 4 3] [5 3 5] [8 7 8] [10 8 9]]"
  output-print matrix:regress matrix:from-row-list [[2 3 2] [4 4 3] [5 3 5] [8 7 8] [10 8 9]]

  ; The forecasts may also be done using regress.  Here they are. Note that the next value
  ; to be forecast is for the value after the 6 observations supplied. But since lists begin with position
  ; zero, that will be for position 6.
  ; this is what happens inside matrix:forecast-linear-growth.
  output-print "long way to do the linear forecast using regress"
  let data-list [20 25 28 32 35 39]
  let indep-var (n-values length data-list [?]) ; 0,1,2...,5
  let lin-output matrix:regress matrix:from-column-list (list data-list indep-var)
  let lincnst item 0 (item 0 lin-output)
  let linslpe item 1 (item 0 lin-output)
  let linR2   item 0 (item 1 lin-output)
  output-print (list (lincnst + linslpe * 6) (lincnst) (linslpe) (linR2))

  ; this is what happens inside matrix:forecast-compound-growth.
  output-print "long way to do the compound-growth forecast using regress"
  let com-log-data-list  (map [ln ?] [20 25 28 32 35 39])
  let com-indep-var2 (n-values length com-log-data-list [?]) ; 0,1,2...,5
  let com-output matrix:regress matrix:from-column-list (list com-log-data-list com-indep-var2)
  let comcnst exp item 0 (item 0 com-output)
  let comrate exp item 1 (item 0 com-output)
  let comR2       item 0 (item 1 com-output)
  output-print (list (comcnst * comrate ^ 6) (comcnst) (comrate) (comR2))

  ; this is what happens inside matrix:forecast-continuous-growth.
  output-print "long way to do the continuous-growth forecast using regress"
  let con-log-data-list  (map [ln ?] [20 25 28 32 35 39])
  let con-indep-var2 (n-values length con-log-data-list [?]) ; 0,1,2...,5
  let con-output matrix:regress matrix:from-column-list (list con-log-data-list con-indep-var2)
  let concnst exp item 0 (item 0 con-output)
  let conrate     item 1 (item 0 con-output)
  let conR2       item 0 (item 1 con-output)
  output-print (list (concnst * exp (conrate * 6)) (concnst) (conrate) (conR2))


  ;;NOTE: The matrix extension could be extended with more functionality,
  ;;      since the Jama library it is based on can do much more
  ;;        (e.g. LU, Cholesky, SV decompositions)
end 


; Public Domain:
; To the extent possible under law, Uri Wilensky has waived all
; copyright and related or neighboring rights to this model.

There are 3 versions of this model.

Uploaded by When Description Download
Uri Wilensky over 11 years ago Updated to NetLogo 5.0.4 Download this version
Uri Wilensky about 12 years ago Updated version tag Download this version
Uri Wilensky almost 13 years ago Updated from NetLogo 5.0 Download this version

Attached files

File Type Description Last updated
Matrix Example.png preview Preview for 'Matrix Example' over 11 years ago, by Uri Wilensky Download

This model does not have any ancestors.

This model does not have any descendants.