MaterialSim Grain Growth
Model was written in NetLogo 5.0.4
•
Viewed 591 times
•
Downloaded 108 times
•
Run 1 time
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
Info tab cannot be displayed because of an encoding error
Comments and Questions
Please start the discussion about this model!
(You'll first need to log in.)
Click to Run Model
;; two different materials or phases breed [ element1s element1 ] ;; element1 is the main material breed [ element2s element1 ] ;; element2 is the materials which is ;; dispersed inside element1 (second-phase particles) element1s-own [ neighbors-6 ;; agentset of 6 neighboring cells ] turtles-own [ neighboring-turtles ;; agentset of surrounding atoms sides-exposed ;; number of sides exposed to walls (between 0 and 4) ] globals [ logtime ;; log of time colors ;; used both to color turtles, and for histogram xmax ;; max x size ymax ;; max y size average-grain-size ;; average grain size logaverage-grain-size ;; log of average grain size (for plotting) initial-loggrain-size ;; For grain growth exponent calculation and graphing initial-logtime ;; For grain growth exponent calculation and graphing grain-growth-exponent ;; Grain growth exponent update-plots? ;; boolean for updating plots immediately ] ;; setup checks whether user has chosen "import image" or random in the chooser-widget to setup if starting-point = "Random Arrangement" [ makes-initial-box-random ] if starting-point = "Import Image" [ import-image ] reset-ticks end to setup-hex-grid ;; setup the hexagonal grid in which atoms will be placed ;; and creates turtles set-default-shape element2s "square 2" ask patches [ sprout 1 [ ;; if there is a second element, create the corresponding atoms ifelse (percent-element2 > random 100) [ ;; element2 is the fixed second-phase particle set breed element2s set color white set heading 360 ] [ ;; element1 is the main material which grows grains set breed element1s set shape atom-shape set color random 139 ;; to ensure that the colors are distinct, we only let ;; colors deviate from base color by plus or minus 3 set color one-of base-colors - 3 + random 6 set heading color ] ;; shift even columns down if pxcor mod 2 = 0 [ set ycor ycor - 0.5 ] ] ] ; the two lines below are for NetLogo 3D. Uncomment them, if you are using NetLogo 3D. ; ask element1s [ set shape3d "sphere" ] ; ask element2s [ set shape3d "cube" ] ;; now set up the neighbors6 agentsets ask element1s [ ;; define neighborhood of atoms ifelse pxcor mod 2 = 0 [ set neighbors-6 element1s-on patches at-points [[0 1] [1 0] [1 -1] [0 -1] [-1 -1] [-1 0]] ] [ set neighbors-6 element1s-on patches at-points [[0 1] [1 1] [1 0] [0 -1] [-1 0] [-1 1]] ] ] end ;; makes initial box for image import to makes-initial-box setup-hex-grid end ;; makes initial box for random arrangement to makes-initial-box-random clear-all setup-hex-grid end ;; import image into turtles to import-image clear-all let file user-file if file = false [ stop ] ;; imports image into patches import-pcolors file ;; converts the square grid to an hex grid makes-initial-box ;; transfers the image to the turtles. Rounds the color values to be integers. ask turtles [ set color round pcolor set heading color ] ;; erases the patches (sets their color back to black), ask patches [ set pcolor black ] reset-ticks end to define-neighboring-turtles ;; defines neighboring turtles. Some are "off" because atoms are in hexagons ask turtles [ set neighboring-turtles (turtles at-points [ [-1 1] [ 0 1] [1 1] [-1 0] [ 0 0] [1 0] [-1 -1] [ 0 -1] [1 -1] ]) ] end to go ;;initiates grain growth let total-atoms count turtles ;; stops when there is just one grain if average-grain-size >= total-atoms [ stop ] ;;limits grain growth to element1, element2 represent the stationary second-phase particles ask element1s [grain-growth] ; ;; calculates grain variables at a given frequency to save CPU processing ; ;; we + 1 to ticks to put it in sync with plots (that are updated in 'tick') ; if remainder (ticks + 1) ticks-per-measurement = 0 [ ; count-grains-and-measure-grain-size ; ] ;; advance Monte Carlo Steps (simulation time) ;; one Monte Carlo Step represents 'n' reorientation attemps, ;; where 'n' is the total number of atoms tick end to count-grains-and-measure-grain-size ;; we only do this for ticks > 0 since we can't take log of 0 if ticks > 0 [ set logtime log ticks 10 ] grain-count if average-grain-size != 0 [ set logaverage-grain-size (log (average-grain-size) 10) ] ;; we set the initial log time and grain size at 20 (we don't start ;; calculating grain size until then to give the system a bit of time to stabilize if ticks = 20 [ set initial-logtime logtime set initial-loggrain-size logaverage-grain-size ] ;; only initiates grain size calculation after 20 ticks if ticks > 20 [ ;; calculate the angular coefficient of the grain growth curve ;; since it is a log-log plot, it's the grain growth exponent set grain-growth-exponent (-1 * ((logaverage-grain-size - initial-loggrain-size) / (initial-logtime - logtime))) ] end to grain-count ;; count number of grains based on the number of linear intercepts let orientation-for-intercept-count 90 ;; direction of intercepts count let intercepts 0 let total-atoms count turtles ;; asking only elements1 with xcor less than 24 ;; those at 24 are on the 'edge of the world' which means ;; that they will never have neighbors to their right. ;; we therefore simply ignore them for this purpose. ask element1s with [ xcor < 24 ] [ ;; checks if there is a turtle to the right for the intercept calculation let target-patch patch-at-heading-and-distance orientation-for-intercept-count 1 ifelse target-patch != nobody and any? turtles-on target-patch [ ;; If there is a turtle, checks if the heading is different. let right-neighbor one-of turtles-on target-patch if heading != [ heading ] of right-neighbor [ ;; If heading is different, add 1 to 'intercepts'. set intercepts (intercepts + 1) ] ] [ ;; if there is no turtle, simply add 1 to 'intercepts'. ;; A turtle/nothing interface is considered as grain boundary. set intercepts (intercepts + 1) ] ] ;; we add one to intercepts so that zero intercepts = one grain, one intercept = 2 grains, etc. set average-grain-size total-atoms / (intercepts + 1) end ;; Grain growth procedure - free energy minimization ;; if another random crystallographic heading minimizes energy, switches headings, otherwise keeps the same. to grain-growth ;; if atom has no neighbors, it is surrounded by element2s, and will not change its orientation if not any? neighbors-6 [ stop ] ;; calculates the PRESENT free energy let present-heading (heading) let present-free-energy count neighbors-6 with [ heading != present-heading ] ;; chooses a random orientation let future-heading ([heading] of (one-of neighbors-6)) ;; calculates the FUTURE free energy, with the random orientation just chosen let future-free-energy count neighbors-6 with [ heading != future-heading ] ;; compares PRESENT and FUTURE free-energies; the lower value "wins" ifelse future-free-energy <= present-free-energy [ set heading future-heading ] [ if (annealing-temperature > random-float 100) [ set heading (future-heading) ] ] ;; this last line simulates thermal agitation (adds more randomness to the simulation) ;;update the color of the atoms set color heading end ;; drawing procedure to turtle-draw if mouse-down? [ ;; reports true or false to indicate whether mouse button is down ask patch mouse-xcor mouse-ycor [ ask element1s in-radius brush-size [ set color read-from-string draw-color set heading color ] ] display ] end ;; in the drawing mode, erases the whole "canvas" with red to erase-all ask element1s [ set color red set heading color ] end ; Copyright 2005 Uri Wilensky. ; See Info tab for full copyright and license.
There are 15 versions of this model.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
MaterialSim Grain Growth.png | preview | preview | over 11 years ago, by Reuven M. Lerner | Download |
MaterialSim Grain Growth.png | preview | Preview for 'MaterialSim Grain Growth' | over 11 years ago, by Uri Wilensky | Download |
This model does not have any ancestors.
This model does not have any descendants.