
PUPIReal

A tool for numeric function optimisation
inspired in the behaviour of urban pigeons

User Guide

Version 1.16

Martha Garzón, BEng.

Sergio A. Rojas, PhD.

Universidad Distrital Francisco José de Caldas

Bogotá, Colombia, 2020

PUPIReal Version 1.16 - User guide.

Copyright c© 2020 Martha Garzón and Sergio A. Rojas

This document is distributed under the CC BY-NC-ND license (Creative Commons
Attribution-Noncommercial-NoDerivatives 3.0). Any other unauthorised form of dis-
tribution, copying, duplication, reproduction, or sale (total or partial) of the content of
this document, both for personal and commercial use, will constitute an infringement
of copyright. This guide is an original work of its authors, and therefore it is protected
by the laws that regulate copyright and intellectual property. The opinions and points
of view expressed in this document are personal to the authors and do not compromise
the policies, intentions, strategies, or official position of any other organism, company,
organisation, service or person mentioned in it.

The authors have made every effort to ensure that this guide is free from errors or
omissions. However, the authors accept no responsibility for offence, damage or loss
caused to any person acting or endorsing actions using the material contained in this
document.

First Edition, August 2020
Bogotá, Colombia

Overview

PUPIReal is a software tool designed to find approximate solutions to optimisation
problems whose decision variables take numeric values in the real domain. The method
used by PUPIReal to find a solution, is inspired in the foraging behaviour or urban
pigeons, adapted to the framework of agent–based models. The idea behind is to
simulate a flock or swarm of artificial pigeons that explore an input space, so as to
discover regions with promising sources of food, that is, regions representing suitable
approximate solutions for the optimisation problem.

The approach of solving an optimisation problem with a swarm of artificial agents
undergoing an adaptation process is known as Swarm Intelligence algorithm. Instead
of using mathematical analysis of aggregated variables describing the phenomena, this
approach resorts to modelling the interaction of a group of individuals in a simulated
environment and trace the evolution of such variables as the simulation progresses. In
this way, PUPIReal assumes that global information about the problem emerges as an
intrinsic property of the evolution of the algorithm, which can not be explained away by
isolated contributions of single agents. In addition, visual inspection of the emerging
patterns of pigeons flocking and wandering, in response to changes in the simulation
parameters, can give useful insights regarding the hidden particularities of the problem.

PUPIReal v1.16 has been released under GNU General Public License (GPLv3); it is
available online at:

http://modelingcommons.org/browse/one_model/6390

iii

http://modelingcommons.org/browse/one_model/6390

Contents

Overview iii

1 The optimisation tool 1
1.1 What is PUPIReal? . 1
1.2 How it works . 2
1.3 How to use it . 4
1.4 Other distinctive features . 6
1.5 Try it yourself . 6
1.6 Extending the tool . 7
1.7 References . 7

2 Installation and execution 9
2.1 Online version . 9
2.2 Desktop version . 10

3 Source code 13

4 Software license 17

v

Chapter 1

The optimisation tool

1.1 What is PUPIReal?

PUPIReal is a software tool developed as an agent-based model of a recently intro-
duced swarm-based search algorithm for numeric real-valued unconstraint optimisation,
inspired in the foraging behaviour of urban pigeons (see [1] for details). The tool is
intended to find valuable areas or spots in a simulated optimisation landscape, by mim-
icking how pigeons manage to discover sources of food as they navigate their natural
territories, i.e urban parks. The landscape obeys to the variation of a cost function
evaluated in the different coordinates of the search space (here, a 2D space).

The software considers three distinct pigeon roles or agent types: a leader, who is
the pigeon located at the richest source of food at any moment during the simulation
(coloured fuchsia), the followers, who are pigeons pursuing the leader in the hope of
getting a share of his food (coloured blue), and the walkers, who are pigeons wondering
around aimlessly but with an eye looking for food too (coloured green).

1

1.2 How it works

The numeric optimisation problem is determined by the LANDSCAPE that is obtained as
a discrete projection of the real-valued cost function onto the 2D grid of cells comprising
the simulation view area. The set of benchmark LANDSCAPEs available in the tool
are described next. We provide the name, characteristics, 2D surface plot, function
definition, range, optimal solution and optimal cost for each problem:

SPHERE

Separable, Unimodal
RASTRIGIN

Separable, Multimodal, Local minima

f (x) = x2
1 + x2

2 f (x)=20+∑
2
i=1(x

2
i −10cos(2πxi))

−6 < x1,x2 < 6
x? = (0,0); f (x?) = 0

−6 < x1,x2 < 6
x? = (0,0), f (x?) = 0

ROSENBROCK

Non-Separable, Unimodal, Valley
HIMMELBLAU

Non-Sep., Multimod., Non-local min.

f (x) = 100(x2−x2
1)

2+(1−x1)
2 f (x)=(x2

1+x2−11)2+(x1+x2
2−7)2

−6 < x1,x2 < 6
x? = (1,1)
f (x?) = 0

−6 < x1,x2 < 6

x? =
{

(3,2),(2.81,3.28)
(3.78,3.28),(3.58,1.85)

f (x?) = 0

EGGHOLDER

Non-Separable, Multimodal, Local min.
RANDOM (example)

Separable, Multimodal, Local min.

f (x)=−x1 sin
(√
|x1−(x2+47)|

)
−(x2+47)sin

(√
|0.5x1+(x2+47)|

) f (x)∼N ((0,0),500)

−512 < x1,x2 < 512
x?=(512,404.23), f (x?)=−959.64

−6 < x1,x2 < 6
x?: not fixed (on-the-fly)

2

Hence, pigeons will “search for food” in the projection of said landscape into the 2D
view area, where the spots with lower values are shown black in the landscape, whereas
the higher values are shown white, and middle values are shown in shades of yellow.
Since the purpose of the model is optimisation, the goal is to discover a spot which
optimises the value of the cost function evaluated at the coordinates of each cell. Notice
that in the current version the algorithm minimises, that is, it searches for a spot with the
lowest cost function value.

The main elements taken into account during the design of the tool are given next:

• Purpose. The tool is intended to mimic the behaviour of urban pigeons while
foraging for sources of food, within a simulated optimisation landscape.

• Agents. We define three distinct pigeon roles, i.e. agent types: a leader, who is the
pigeon located at the richest source of food in a given time step in the simulation,
the followers, who are pigeons pursuing the leader in the hope of getting a share
of his food, and the walkers, who are pigeons wondering around aimlessly but
with an eye looking for food too. The number of pigeons in the population, named
POP-SIZE, is kept fixed. The number of walkers is determined as a percentage
WALKERS-RATE of the population.

• Environment. The landscape where pigeons search for food will be represented
as a 2D grid of cells. Since the purpose of the model is optimisation, the goal is to
discover the cell with maximum (or minimum) concentration of food, which in
turn is obtained by evaluating a cost function at the coordinates of each cell.

• Properties. Each pigeon is characterised by a location in the landscape (x,y) and
the perceived density of food which is given by a function cost value associated to
the LANDSCAPE at such location. The latter in turn defines its fitness.

• Behaviours. All pigeons in the population can sense who is the leader (that is, we
enable a global information-sharing mechanism). Followers will move towards
the leader, so their location is updated in the direction of the leader’s location.
The walkers, in contrast, move randomly in any direction. The size of the steps of
followers’ and walkers’ movements are defined with parameters 0 < ALPHA < 1
and 0 < SIGMA < 1, respectively. Notice that pigeons may change their roles
during their lifetime, depending on their actual fitness.

• Input and Output. The input for the model are the cost function to optimise
(LANDSCAPE) and the parameters POP-SIZE, WALKERS-RATE, ALPHA and
SIGMA. The output is the location of the cell found as the richest source of food,
that is, the solution given by the pigeon with best fitness throughout the simulation.

• Timeline. The initial location of the population of pigeons is assigned randomly
within the boundaries of the landscape. Afterwards, at each time step each pigeon
moves according to its role, its fitness is updated, and if needed, the leader is
re-assigned.

• Language. The software is implemented using the special–purpose ABM devel-
oping platform NetLogo 6.1.0 (see [2]).

3

In summary, each pigeon is characterised by a location (x,y) in the LANDSCAPE
and the perceived density of food (or cost) in such location which determines its fitness
to solve the problem. Besides, all pigeons in the population can sense who is the leader
(that is, we enable a global information-sharing mechanism). Followers will move
towards the leader, so their location is updated in the direction of the leader’s location.
The walkers, in contrast, move randomly in any direction. Pigeons may change their
roles during their lifetime as the simulation progresses, depending on their current
fitness.

At each step of the simulation performs four simple actions: find the leader, move
the followers, move the walkers and update the best solution found so far. These actions
correspond to the following routines: FIND-LEADER (chooses as leader pigeon the one
having the best fitness and updates the best fitness ever if necessary), FOLLOW-MOVE
(moves each follower towards the leader with the step-size ALPHA, plus a random shift
in its orientation due to wind or collisions), and WALK-MOVE (moves each walker
around randomly with a step-size SIGMA). These two movement rules correspond to the
exploration/exploitation mechanisms of the search algorithm (see [1] for more details).

The simulation is terminated either after a maximum number of steps, MAX-STEPS,
or when the truth optimal solution is found prematurely.

1.3 How to use it

Firstly, from the control panel shown above, choose an optimisation problem to be
solved from the LANDSCAPE pull-down list. For any of these problems, then define
the appropriate limits of the search space coordinates, namely the XY-BOUNDS. Addi-
tionally, define the algorithm parameters POP-SIZE, WALKERS-RATE, ALPHA and
SIGMA. You can also set the termination criterion MAX-TICKS. Then press SETUP,
then GO.

The initial location of the population of pigeons will be assigned randomly within
the boundaries of the landscape. Afterwards, at each time step pigeons move according
to its role, the population fitness is updated, and if needed, the leader is re-assigned. The
emergent behaviour of the pigeon flock will show up, while they attempt to discover
the promising regions within the landscape; the simulation will show the three breeds
of pigeons, leader, followers and walkers with different colours (red, blue and red,
respectively), see the next image.

4

The output monitors show the location and cost of the true solution for the problem,
the best location and best cost ever found by the algorithm during the simulation, and
the location and cost associated to the current leader. If the algorithm is able to find the
true solution, then the BEST-TICK and RUNTIME monitors will display a "!!!" sign
inserted behind their actual values (see below).

Lastly, the model also outputs the plot of the leader fitness vs time, the plot of
fitness of the best solution found vs time and the plot of flock cohesion vs time if the
COHESION? switch is enabled. The latter implies an additional cost to the running
time, as the model needs to compute distances between all the pigeons in the follower’s
flock. The plot panel of the tool is shown next.

5

1.4 Other distinctive features
You can see that the flock of follower pigeons moves out from one local minima to
another. This is explained because every certain number of ticks, the entire population
become walkers that start looking around for other regions as sources of food. This
phenomenon is attested by the fitness variation of the leader pigeon during the simulation
timeline, as it can be seen in the corresponding plot. Nonetheless, the best found ever
solution always has a decreasing fitness as it can be verified in its respective plot.

Similarly, the transition of the flock from one local minimum location to another is
depicted in the periodic patterns that appear in the cohesion plot.

1.5 Try it yourself
The model includes the mathematical expression and projection of a set of widely-
known benchmark functions for unconstrained continuous optimisation: SPHERE,
RASTRIGIN, ROSENBROCK, HIMMELBLAU, EGGHOLDER (see the definitions
in Section 1.2) . In addition to these benchmarks, we defined a RANDOM landscape
that is generated on- the-fly with values sampled from a scaled normal distribution;
hence, in this problem the real optimum is not known in advance, in contrast to the
other functions. Lastly, a seventh benchmark was included, a modified SPHERE with
the optimum shifted to the second quadrant. Each problem exhibits different properties
(multi-modality, convexity, separability, etc.) and search ranges (we suggest using a
XY-BOUNDS of 512 for EGGHOLDER and XY-BOUNDS of 6 for the other problems).

6

Notice that all the problems produce a constant landscape (except RANDOM), so
you can try and see the effect of varying the different parameters. For starters, a typical
configuration can be:

• POP-SIZE = 20,

• WALKERS-RATE = 0.25,

• ALPHA = 0.1,

• SIGMA = 1,

• MAX-TICKS = 10000,

• XY-BOUNDS = 6 (or 512 if LANDSCAPE is EGGHOLDER).

If you want to highlight the location of the true solution or the current leader turn
on the SPOTLIGHT. The RANDOM problem produces a different landscape and true
solution each time you press SETUP. It is interesting to see how the pigeon-inspired
algorithm is able to solve it nonetheless most of the times.

1.6 Extending the tool
An interesting question arising is if the convergence speed of the algorithm can be
improved without compromising its simplicity for practical purposes, for example using
time-decay updates of the step sizes of pigeon movements. In addition, the experiments
with the RANDOM benchmark hints at the possibility of the model to solve non-
stationary problems, that is, problems were landscape may vary over time, an interesting
setting for real-world problems.

Other topics for further research are validating whether the ABM approach to swarm
intelligence can be extended or is feasible to address optimisation in higher dimensions,
different function domains (continuous, binary, combinatorial) or to incarnate other
metaphors originating from the field of collective intelligence.

1.7 References
[1] Garzon, M., and Rojas-Galeano, S. (2019). An Agent-Based Model of Urban

Pigeon Swarm Optimisation. In: 2019 IEEE Latin American Conference on Com-
putational Intelligence. https://ieeexplore.ieee.org/document/9036758.
doi: 10.1109/LA-CCI47412.2019.9036758.

[2] Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL.

7

 https://ieeexplore.ieee.org/document/9036758
 http://ccl.northwestern.edu/netlogo/

8

Chapter 2

Installation and execution

2.1 Online version
The easiest way of experimenting with PUPIReal is by using its online version. The
software is available at the ModellingCommons website. So, you just need to follow
these steps:

1. Open your favourite Internet browser and point it to the following URL:
http://modelingcommons.org/browse/one_model/6390

2. The following web page should appear:

3. From the toolbar, choose the “Run in Netlogo Web” tab:

9

http://modelingcommons.org/browse/one_model/6390

4. A grey area in the middle of the screen is shown. Do “Click to Run Model”:

5. The model main screen will show up:

6. That’s all! Choose the running parameters in the control panel, click SETUP and
then GO! You will see how the flock of pigeons adapt to the landscape of the
problem in the simulation view area, while the performance indicators will be
shown in the monitors and the plots.

2.2 Desktop version
The desktop version is recommended if you want to try heavy experimentation, such
as parameter tuning, average behaviour of multiple runs or simulations with large
populations. For this purpose, PUPIReal runs over the NetLogo desktop simulation
platform [2]. In this case, you need to go through the following steps:

10

1. Download and install the NetLogo desktop software. For this purpose, go to
http://ccl.northwestern.edu/netlogo/, click in “Download NetLogo”
and follow the instructions:

2. Download the PUPIReal model file from the model webpage, using the “Export”
button:

A file called Urban Pigeon-inspired Model for Unconstraint Optimisation.nlogo
would be downloaded to your local disk.

3. Run NetLogo on your computer. Choose the menu option File→ Open:

Locate the PUPIReal .nlogo file that you downloaded previously and open it.

11

http://ccl.northwestern.edu/netlogo/

4. The PUPIReal main screen will show up:

That’s it! Choose the running parameters in the control panel, click SETUP and
then GO! You will see how the flock of pigeons adapt to the landscape of the
problem in the simulation view area, while the performance indicators will be
shown in the monitors and the plots.

12

Chapter 3

Source code

;; ---
;; Particle Urban Pigeon Inspired (PUPI) Algorithm for
;; Unconstrained Numerical Optimization.
;;
;; A model by Sergio Rojas-Galeano and Martha Garzon
;; v1.16 Copyright (c) July 2020 The authors
;; Correspondance email: srojas@udistrital.edu.co
;; Universidad Distrital Francisco Jose de Caldas, Bogota,

Colombia
;;
;; This program is free software: you can redistribute it and/or

modify
;; it under the terms of the GNU General Public License (GPLv3)
;; (see license at: https://www.gnu.org/licenses/gpl-3.0.txt)
;;
;; The model is made publicly available in the hope that it will

be useful
;; to modelers, but WITHOUT ANY WARRANTY whatsoever (see license

for details).
;; ---

globals[
;; PUPI globals
pupi-leader ; best pigeon in current iteration
pupi-leader-fitness ; highest value found by PUPI
pupi-best-patch ; best patch found by PUPI
pupi-runtime ; total algorithm runtime (ms)
pupi-cohesion ; flock cohesion
pupi-best-tick ; tick where optimum was found

;; Problem variables
true-best-patch ; patch with the true best value

]

patches-own[
x ; simulated pxcor, depending on the bounds range of vars
y ; simulated pycor, depending on the bounds range of vars
value ; each patch has a value depending on cost_function and

its coordinates

13

; the goal of PUPI algorithm is to find the patch with
the best fitness value within the search space

]

;; PUPI breeds
breed [walkers walker]
breed [followers follower]

;; Create the fitness landscape depending on optimisation problem
to setup-search-landscape
clear-all

;; make a landscape with hills and valleys according to chosen
cost function

ask patches [
set x pxcor * (xy-bounds / max-pxcor)
set y pycor * (xy-bounds / max-pycor)

set value (ifelse-value
landscape = "Sphere" [

x ^ 2 + y ^ 2
]

landscape = "Sphere-offset" [
(x - 50 * (xy-bounds / max-pxcor)) ^ 2 + (y + 50 *

(xy-bounds / max-pxcor)) ^ 2
]
landscape = "Rastrigin" [; note that degrees, not radians,

are needed for cos function
20 + ((x ^ 2) - 10 * cos ((180 / pi) * (2 * pi) * x))

+ ((y ^ 2) - 10 * cos ((180 / pi) * (2 * pi) * y))
]

landscape = "Rosenbrock" [
100 * (y - (x ^ 2))^ 2 + (1 - x)^ 2

]
landscape = "Himmelblau" [

((x ^ 2) + y - 11) ^ 2 + (x + (y ^ 2) - 7)^ 2
]
landscape = "Eggholder" [; note that degrees, not radians,

are needed for sin function
((- x) * sin ((180 / pi) * sqrt (abs (x - (y + 47)))))

- (y + 47) * sin ((180 / pi) * sqrt (abs ((x / 2) +
(y + 47))))

]
[random-normal 0 500] ; the last case is a random

landscape
)

]

if landscape = "Random" [
ask min-one-of patches [value][set value value - 500]
repeat 10 [diffuse value 1]

]

;; find the true best value
ask min-one-of patches [value][set true-best-patch self]

14

;; scale patches color within values limits
let min-val min [value] of patches
let max-val max [value] of patches

ask patches [set pcolor scale-color yellow value min-val
log abs max-val 1.05]

end

to setup
setup-search-landscape

;; create PUPI breeds of pigeons and place them randomly in the
world

create-walkers pop-size * walkers-rate [
setxy random-xcor random-ycor ; set walker pigeons starting

position
set color green ; assing walker color
set size 8

; make pigeons slightly bigger
]
create-followers pop-size - count walkers [

setxy random-xcor random-ycor ; set follower pigeons
starting position

set color blue ; assing walker color
set size 8

; make pigeons slightly bigger
]
;; initialise pupi best patch randomly
set pupi-best-patch patch random-xcor random-ycor

reset-ticks
end

to go
reset-timer

; ifelse ticks mod 1000 > 800 [
ifelse ticks mod 500 > 400 [

;; PUPI wild search (starvation) moves
ask (turtle-set followers walkers) [walk-move]

][
;; PUPI normal search moves
find-leader
ask followers [follow-move]
ask walkers [walk-move]
ask pupi-leader [set color red]

]
set pupi-runtime pupi-runtime + timer
if cohesion? [set pupi-cohesion sum [distance pupi-leader] of

followers]

update-spotlight
tick
if (ticks > max-ticks) or ((pupi-best-tick > 0)) [stop]

end

;; find leader pigeon and update its fitness value

15

to find-leader
;; leader is best pigeon either follower or walker
ask min-one-of (turtle-set followers walkers) [value][

set pupi-leader self ; update leader
set pupi-leader-fitness value
if pupi-leader-fitness < [value] of pupi-best-patch [

set pupi-best-patch patch-here
if pupi-best-patch = true-best-patch [set pupi-best-tick

ticks]
]

]
end

;; move followers towards pigeon leader
to follow-move
face pupi-leader fd (distance pupi-leader) * alpha
rt one-of [0 90 180 270] fd random-normal 0 2 ; a small route

deviation due to collisions or wind
set color blue

end

;; move walkers around
to walk-move
rt one-of [0 90 180 270] fd (sigma * random-normal 0 1)
set color green

end

;; turn on the spotlight on the chosen agent
to update-spotlight
ifelse spotlight = "Pupi best ever"
[watch pupi-best-patch]
[ifelse spotlight = "True best"

[watch true-best-patch]
[ifelse spotlight = "Pupi leader"

[watch pupi-leader]
[reset-perspective]

]
]

end

16

Chapter 4

Software license

PUPIReal version 1.16
Copyright c© 2020 Martha Garzón and Sergio A. Rojas.

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program. If not, you can download it from:

https://www.gnu.org/licenses/gpl-3.0.en.html.

17

https://www.gnu.org/licenses/gpl-3.0.en.html

	Overview
	The optimisation tool
	What is red PUPIReal?
	How it works
	How to use it
	Other distinctive features
	Try it yourself
	Extending the tool
	References

	Installation and execution
	Online version
	Desktop version

	Source code
	Software license

