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Visual Abstract

Economic decisions arise from evaluation of alternative actions in contexts of motivation and memory. In the
predatory sea-slug Pleurobranchaea the economic decisions of foraging are found to occur by the workings of a
simple, affectively controlled homeostat with learning abilities. Here, the neuronal circuit relations for approach-
avoidance choice of Pleurobranchaea are expressed and tested in the foraging simulation Cyberslug. Choice is
organized around appetitive state as a moment-to-moment integration of sensation, motivation (satiation/hunger),
and memory. Appetitive state controls a switch for approach vs. avoidance turn responses to sensation. Sensory
stimuli are separately integrated for incentive value into appetitive state, and for prey location (stimulus place) into
mapping motor response. Learning interacts with satiation to regulate prey choice affectively. The virtual predator

Significance Statement

Contemporary artificial intelligence lacks the attributes of natural intelligence, in particular the abilities to
relate information affectively. Accordingly, it is notable that the most complex animal behaviors serve
primitive homeostatic goals, and emerge from the primitive mechanisms generating motivation and reward
learning. Here is shown in simulation the function of a basic neuronal circuit for cost-benefit decision,
derived from studies of a predatory generalist, the sea-slug Pleurobranchaea, and based on affective
integration of information. Its simplicity may reflect distant ancestral qualities on which complexities in
economic, cognitive, and social behaviors were built. The simulation validates experimental data and
provides a basic module for expansion of behavioral complexity.
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realistically reproduces the decisions of the real one in varying circumstances and satisfies optimal foraging
criteria. The basic relations are open to experimental embellishment toward enhanced neural and behavioral
complexity in simulation, as was the ancestral bilaterian nervous system in evolution.
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Introduction
Foraging behavior in tracking and consuming resources

is a series of economic decisions guided by stimulus
characters predictive of risk and resource value. The ba-
sic behavioral choice is between an approach or avoid-
ance of salient stimuli, a cost-benefit calculation done
through integrating stimulus properties with motivation
and memory. However, the natural intelligence displayed
by even the simplest foraging animals has remained to be
captured fully in artificial intelligence constructs in terms
of actual neural computations made by real animal forag-
ers.

We undertook to implement and test a model of forag-
ing decision derived from the neuronal circuitry underlying
approach-avoidance decisions in the predatory sea-slug
Pleurobranchaea. The neuronal circuitry of decision has
been characterized down to the single-neuron level (Gil-
lette et al., 1982; London and Gillette, 1986; Jing and
Gillette, 2000, 2003; Hirayama and Gillette, 2012;
Hirayama et al., 2012, 2014). In particular, a key decision
mechanism was found to lie in regulation of the turn motor
network by the feeding network, whose excitation state
depends on sensory input, memory, and satiation. Suffi-
cient excitation in the feeding network converts default
avoidance responses to sensory stimuli to approaching
turns (Hirayama and Gillette, 2012). These findings local-
ized motivation, appetitive state, and control of motor
decision to the feeding network. They also account for
behavior in which (1) quite hungry specimens not only
orient to and bite at weak appetitive stimuli, but will also
attack moderately noxious stimuli; (2) appetitive thresh-
olds for approaching turns rise proportionately with sati-

ation; and (3) as satiation increases, the animals avoid
increasingly strong appetitive stimuli (Gillette et al., 2000;
Noboa and Gillette 2013). Further, motor choice in Pleu-
robranchaea’s learned discrimination of odors paired with
unconditioned stimuli (USs) is also mediated at the feed-
ing motor network level (Davis et al., 1980; Mpitsos and
Cohan, 1986a; Noboa and Gillette, 2013). These relations
indicate a simple neural model for cost-benefit-based
decision in the animal’s foraging (Gillette et al., 2000;
Hirayama et al., 2012).

The simulation Cyberslug implements the integrated
model in an autonomous agent with behavior designed
from neurophysiological and behavioral data. To our
knowledge no other such empirically driven neuroeco-
nomic simulation has yet been devised. The success and
utility of Cyberslug are supported through its accurate
and dynamic reproduction of functional relations in Pleu-
robranchaea’s nervous system and behavioral repertory,
its ability to maintain the fitness (here, nutritional state) of
a virtual predator through plausible choices of differently
valued prey based on hunger state, sensation, and mem-
ory; and its capacity to weigh risk against resource value
to optimize foraging decisions.

Materials and Methods
Software accessibility

Cyberslug is freely available as extended data online at
https://github.com/Entience/Cyberslug.

General design of biological relations
Sigmoidal relations are used as constructive approxi-

mations to simulate biological processes that accelerate
from small beginnings to saturate at high values. They or
their influential values appear in Equations 3.0, 5.1, 6.0,
7.1, 7.2 to compute virtual place codes for sensory stim-
uli, appetitive stimulus affect, satiation, appetitive state, a
behavioral switch based on appetitive state, and the am-
plitude of a turning response, respectively. Centers and
asymptotes may be graphed for the interested reader
from the values given in the source code.

Learning
Reward and punishment associations are formed with

the prey sensory signatures, odor_hermi and odor_flab,
using the Rescorla-Wagner algorithm for classical condi-
tioning (Rescorla and Wagner, 1972):

�V � � � ��� � V�. (1)

On a given trial the change �V in the predictive value of
a stimulus V (the amount of learning) depends on the
difference between the value of what actually happens, �,
and what is expected (or already learned), V. The � term is
the salience constant (the attention-getting capacity) of
the conditioned stimulus (CS; ranging from 0 to 1, and set
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here at 0.5 for both odor_hermi and odor_flab). The � term
is a rate parameter for the associative capacity of the US
with the CS (ranging from 0 to 1; here a maximum of 1).
The � term is the maximum associative value of the US
(set at 1 for odor_hermi and odor_flab). The Rescorla-
Wagner algorithm was selected for its intuitive layout,
simplicity, and robustness in a range of learning applica-
tions (Danks, 2003; Rasmussen et al., 2015). It is a useful
approximation of learning from insects to mammals (Miller
et al., 1995).

Sensory transduction and integration
The Cyberslug agent uses bilaterally paired, anterior

odor sensors, simplifying the real animal’s chemotactile
oral veil’s function in prey tracking (Yafremava et al.,
2007). The sensors report strengths of the three odors at
slightly less than half a body length in front of the agent
and at a roughly 40° angle with respect to its anteropos-
terior axis. For example, in the case of betaine, the aver-
aged odor strength is

sns_betaine �
sns_betaine_left � sns_betaine_right

2
,

(2)

where sns_betaine_left and sns_betaine_right are loga-
rithmic functions of betaine virtual concentrations at each
sensor. The sns_betaine variable integrates into the ap-
petitive stimulus effect (Eq. 4.2).

The Somatic_Map function transforms sensory input
into a virtual place code of the estimated direction of the
strongest odor. It includes a mechanism emphasizing the
salience of the nearest prey, analogous to surround sup-
pression mechanisms underlying attention (Boehler et al.,
2009): when closer to one prey type, sensation of the other
is decreased, which reduces consumption of the aversively
learned Flab in the presence of the odor of Hermi. The
output of Somatic_Map is a template for the turn amplitudes
of resulting approach-avoidance responses:

Somatic_Map � �sns_flab_left � sns_flab_right
1 � e�k0 ·F

�

sns_hermi_left � sns_hermi_right
1 � e�k0 ·H � (3.1)

where

F � sns_flab � sns_hermi (3.2)

and

H � sns_hermi � sns_flab. (3.3)

The incentive variable (Incentive) integrates sensory in-
formation of positive and negative valences. It represents
the incentive potential of a stimulus as modulated by
learning and motivation:

Incentive � R� � R�, (4.1)

where R� and R- represent appetitive and aversive stim-
ulus affects, respectively:

R� �
sns_betaine

1 � k1 · Vh · sns_hermi
� k3 · Vh · sns_hermi

(4.2)

R� encodes the odor intensity of the primary resource
indicator, betaine, in the first term. The positive associa-
tion of Hermi odor becomes prominent with learning in the
second term, and betaine values become less prominent.
The variable R- represents the learned negative associa-
tion of Flab odor. This variable might also encode nega-
tive effects of pain pathways, but in the present
formulation it omits explicit pain and simply treats its
consequences on aversive learning.

R� � k3·Vf·sns_flab (4.3)

Satiation and appetitive state
Hunger state is represented through the function Sati-

ation, which reflects Nutrition in a sigmoid relation with a
lower bound near 0 and an upper asymptote at 1:

Satiation �
1

�1 � k4·e�4 · Nutrition�2�2
, (5.1)

where Nutrition, without prey consumption, decreases
recursively with each time step:

Nutritiont�1 � Nutritiont � 0.0005·Nutritiont. (5.2)

When feeding occurs, Nutrition is increased by a value
of 0.3. The simulation initializes with Nutrition set at 0.8.

Appetitive state (App_State) is a function of Incentive
and Satiation. It defines the thresholds for decisions to
approach or avoid given prey items. It parallels expression
of appetitive state in the excitation of Pleurobranchaea’s
feeding network (Hirayama and Gillette, 2012). The sig-
moidal element increases App_State as Incentive in-
creases and decreases it as Satiation increases. As in the
real animal, App_State is transiently suppressed during
avoidance turning (J.W. Brown, V. Noboa, and R. Gillette,
unpublished observations). This acts to further bias deci-
sion away from approach during the avoidance turn when
some appetitive sensory input is present:

App_State � 0.01 �
1

�1 � e�k5 · Incentive � k6 · Satiation�
�

k7·(App_State_Switch � 1), (6.0)

where the expression (App_State_Switch – 1), defined
and discussed later, causes a transient suppression of
App_State during avoidance turns. It may be noted that
satiation state is a variable in both Incentive and App_State,
which reflects findings that satiation state is expressed in the
basal excitation state of the feeding network, and that sati-
ation may modulate sensory gain in the periphery (V. No-
boa, T. Achler, and R. Gillette unpublished observations).

The satiation term dominates App_State values at its
extreme ranges (0 and 1). Incentive is significant in the
mid-range, as in Pleurobranchaea (Gillette et al., 2000).
When satiation is either very low or high, it dominates over
the incentive term. When very low, the Cyberslug agent
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chooses to consume the previously learned, noxious Flab.
When very high, it actively avoids otherwise appetitive
Hermis. These choices reproduce those made by very
satiated or hungry Pleurobranchaea (Gillette et al., 2000;
Noboa and Gillette, 2013).

Turning and locomotion
The function App_State_Switch switches the turn motor

network from avoidance to approach, representing the
ASw1,2 actions of Figure 2. It acts like the corollary out-
puts from Pleurobranchaea’s feeding network that toggle
the turn motor network polarity (Brown, 2014). The func-
tion converges steeply to either 1 or -1 depending on the
value of App_State:

App_State_Switch �
�2

1 � e�k8 · �App_State � 0.245�
� 1,

(7.1)

In particular, when App_State goes below or above a
threshold, set here as 0.245, App_State_Switch ap-
proaches 1 or -1, respectively, to govern turn direction.
This threshold might well be a variable influenced by
reproductive state, health, or neuromodulatory inputs
from other neuronal networks (cf Hirayama et al., 2014),
but is set as a simple constant here.

The turn is computed in degrees as:

Turn_Angle �
k9·App_State_Switch

1 � e3 · Somatic_Map
�

App_State_Switch, (7.2)

where positive or negative values of App_State_Switch
cause avoidance or approach turns, respectively. Suffi-
cient excitation in the Feeding Network (when App_State
is �0.245) switches the polarity of an elicited turn from
avoidance to approaching, while Somatic_Map deter-
mines turn magnitude by supplying somatotopic informa-
tion on stimulus location.

When not actively engaged in prey approach or avoid-
ance, the Cyberslug agent pursues a wandering trajec-
tory, given as

Turn_Angle � �1 � random_float(2) (7.3)

The random_float function generates a floating-point
number between 0 and 2. In this case, it causes random
changes in heading ranging from -1 to 1 degree on each
time step.

Results
The core model

Cyberslug is based on neuronal relations of approach-
avoidance decision in Pleurobranchaea’s responses to
odors of potential prey (Gillette et al., 2000; Hirayama and
Gillette, 2012). Figure 1 shows the flow of information,
from initial feature extraction of different sensory inputs to
their evaluation in terms of estimated total resource value
(incentive), based on nutritional need and memory; these
processes then direct motor output for approach or
avoidance turns. Figure 2 shows the logic of the model’s
implementation into Cyberslug. The relations are repre-
sented in simple equations that drive the agent. Values of

Figure 1. Approach-avoidance modeling in Pleurobranchaea. Appetitive state (excitation of the feeding network) summates intrinsic
and learned stimulus values (incentive) with satiety to regulate turn response direction. In parallel, a somatotopic map of a stimulus
in the animal’s oral veil sets the turn trajectory. Incentive sums sensory inputs predicting intrinsic nutritional value (resource signal) and
the learned positive and negative values of prey odor signatures (R� and R-). The positive or negative consequences of attacking the
different prey are learned through instructive feedback from the feeding network. In the absence of incentive, basal appetitive state
simply represents the animal’s satiation state (a negative feedback from prey capture). At some threshold, feeding network outputs
change the turn motor response to a stimulus from default avoidance to an approach turn. A sensory place code (somatic map) for
stimuli provides a template for turn response amplitude in both approach and avoidance. Negative feedback to the feeding network
from the turn network during avoidance transiently suppresses feeding, while feeding network activity is reduced as satiation
increases. The model is modified from Gillette et al., 2000; Hirayama et al. 2012.
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the constants (Kn) in the equations were optimized over
numerous trials and are found in the NetLogo code avail-
able as extended data. Altering the values in the code may
lend appreciation for the role of natural selection in adap-
tively tuning neural circuitry.

Foraging decision is controlled by appetitive state. The
animal’s feeding motor network is at the core of the
decision module. Its excitation state directs choice be-
tween approach and avoidance turns (Hirayama and Gil-
lette, 2012). The excitation state manifests the appetitive
state of the animal; i.e., the disposition to engage in
goal-directed appetitive behavior. Appetitive state inte-
grates the animal’s satiation state, sensation, and mem-
ory of experience (Davis and Gillette, 1978; Davis et al.,
1980; London and Gillette, 1986; Gillette et al., 2000;
Hirayama and Gillette, 2012). Satiation determines the
baseline excitation state of the feeding network. Incoming
sensory inputs are integrated with memory into incentive.
Incentive sums with satiation in the feeding network, ei-
ther increasing or decreasing appetitive state.

By default, when appetitive state is low, the animal’s
nervous system is organized so that the turn response to
any sensory stimulus is avoidance. During the aversive
turn appetitive state is decreased by inhibitory inputs in
the feeding network (Davis and Gillette, 1978; London and
Gillette, 1986; Hirayama and Gillette, 2012; Brown, 2014).
Increasing appetitive state inverts the turn response di-
rection to one of approach. Thus, appetitive state deter-
mines the sensory thresholds for the approach turn
toward a prey and subsequent feeding responses. When
high enough, corollary outputs from the feeding network
appear to switch the excitatory sensory input-encoding
stimulus site from one side of the turn network to the other,
resulting in a turn toward the stimulus (Brown, 2014).

Sensory inputs here are of four kinds: (1) a resource
odor signal predicting nutritional content to Pleuro-
branchaea, the amino acid betaine (Gillette et al., 2000);
(2) a specific odor signature for a particular prey species
(Noboa and Gillette, 2013); and (3) a place code for the
averaged site of sensory input to the sensors (Yafremava
et al., 2007; Yafremava and Gillette, 2011). (1) and (2) are
summed as Incentive for resource and learned positive

and negative values of prey odors (R� and R-, respec-
tively), which is then integrated with motivation (satiation)
as appetitive state in the feeding network. The somatic
map variable embeds (3) as a template for turn re-
sponse amplitude. Positive or negative classical learn-
ing are assumed consequences of feedback from the
feeding network operating in feeding or avoidance
modes, respectively.

The Cyberslug simulation preserves the basic interac-
tions of feeding and turn networks in the control of the
turn by appetitive state and aversive suppression of the
feeding network. Simplifications include: (1) for learning,
explicit pain mechanisms are omitted in favor of arbitrary
consequences; (2) exploratory locomotion is the default
action in absence of active avoidance or approach; and
(3) the switch mechanism for turn direction is rendered as
a sigmoidal equation.

Cyberslug environment
Cyberslug is implemented in the graphic modeling, agent-

based programming language NetLogo 5.3.1. (Wilensky,
1999). Agent actions and odor diffusion are executed in
discrete time steps by underlying code, where agents run
commands in a turn-taking mechanism to simulate concur-
rence. At each time step the agent positions, orientations,
speeds, and odor intensities in individual patches are up-
dated with the variables that control them.

The interface screen (Fig. 3) displays current values of
agent-associated variables and statistics. Users may
override automatic agent navigation by manually control-
ling these agents with the mouse, specify the number of
prey objects in the environment, and switch on or off a
function that traces the agent’s path. When the simulation
is initialized, a single Cyberslug agent and the different
prey are generated at random positions in the environ-
ment.

Prey
The Cyberslug agent encounters two virtual prey, “Hermi”

and “Flab,” after the sea-slugs Hermissenda crassicornis
and Flabellina iodinea, which Pleurobranchaea can encoun-
ter in the wild (Noboa and Gillette, 2013). These are shown

Figure 2. Logical flow in the Cyberslug model. Sensory inputs (SNS) for resource signal odor (Bet) and learned values of prey odor
signatures (Flab and Hermi) are integrated into Incentive and summate with Satiation in appetitive state (App_State). Sensory
somatotopic place information is encoded in somatic map, which acts as a template for the turn response amplitude. The turn motor
network responds by default to sensory input with an avoidance turn response unless input from App_State is high enough to switch
the turn to approach; this is mediated directly by a simple dyadic disinhibitory switch (ASw1,2). Successful predation increases
satiation which in return reduces App_State.
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Figure 3. Screenshots of the Cyberslug environment and interface. Frames are shown from early (upper) and later (lower) in a software
run. The Cyberslug agent (orange) encounters Hermi (green orbs) and Flab (red orbs) in its environment and traces its path (orange
contours). Users can select the number of prey in the environment, move Cyberslug manually, or toggle the path tracer. Various
Cyberslug and environmental parameters are updated in real time, as shown. In the early frame, the Cyberslug is orienting toward prey
(App_State � 0.545, high; App_State_Switch � �1), and in the later frame, it is in aversive mode (App_State � 0.029, low;
App_State_Switch � �1).
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as small orbs, colored green for Hermi and red for Flab.
Each prey secretes two odors: the resource signal be-
taine, a predictor of nutritional resource (Gillette et al.,
2000), and either of “odor_hermi” or “odor_flab.” Odors
diffuse over time and space as for actual diffusion. Prey
move in a simple random walk. Prey numbers remain
constant; when consumed, replacements appear at ran-
dom positions.

The specific odors of Hermi and Flab become associ-
ated with preference and avoidance, respectively, through
reward learning. These effects are analogous to the ready
consumption of Hermissenda by Pleurobranchaea, and
the rejection and aversive learning of Flabellina (Noboa
and Gillette, 2013). A Batesian mimic, “Faux-Flab,” is
included as an option. In Nature, Batesian mimics receive
protection from predation by mimicking appearance or
odor of noxious species, and by their presence may in-
crease attempted predation on the noxious species. Thus,
Faux-Flab has the odor of Flab and the positive rewarding
qualities of Hermi. The mimic is included for the user to
test its effects on predator choices.

The Cyberslug agent
Reward and punishment associations are formed with

the prey sensory signatures using the Rescorla-Wagner
algorithm for classical conditioning (Rescorla and Wag-
ner, 1972), allowing the predator to learn through experi-
ence. Bilaterally paired, anterior odor sensors simplify the
real animal’s chemotactile oral veil’s function in prey
tracking (Yafremava and Gillette, 2011) to report the
strengths of odors for betaine, a predictor of nutritional
value, and the prey signature odors for Hermissenda and

Flabellina. The sensors also transform sensory input into a
virtual place code, giving the estimated direction of the
source of the strongest odor, on which motor response is
patterned. The incentive of an odor is calculated as
summed positive and negative valences, which are deter-
mined by the intrinsic appetitive nature (for betaine) and
learning experiences for the signature odors.

Appetitive state is the final regulator of behavioral
choice. It summates incentive with satiation, and thus
integrates sensory stimulus qualities with learning and
motivation. Satiation is a simple function of nutritional
state, which declines over time following prey consump-
tion. Satiation dominates appetitive state at its extreme
ranges (quite hungry or not); whereas stimulus incentive is
significant in the mid-range. At a threshold value, appet-
itive state causes a directional switch between approach
or avoidance in the turn response to an odor. The choices
made reproduce those seen across the spectra of learn-
ing and hunger state by Pleurobranchaea (Gillette et al.,
2000; Noboa and Gillette, 2013).

Testing the simulation
Cyberslug was tested for prey selectivity as modified by

learning, motivational state, and their interactions. Four
sets of six tests were run under conditions assessing
effects of learning and satiation mechanisms on prey
selection. Effects of satiation and learning on selectivity
were tested in arenas containing (1) 10 Flabs and 3 Her-
mis; (2) 13 Flabs alone; and (3) 13 Hermis alone. Tests ran
for 150,000 software time steps.

Results in Figure 4 show that in the 10 Flab/3 Hermi
arena satiation acted to limit the numbers of prey con-

Figure 4. Effects of learning and satiation, and their interactions, on prey selectivity and total prey consumed. Without either
mechanism for learning or satiation, selectivity was low, and prey were consumed as encountered in the 10 Flab/3 Hermi arena.
Adding learning mechanisms did not alter either selectivity or number of prey consumed. When satiation was present without learning,
prey consumed dropped, but selectivity was unchanged. When both learning and satiation mechanisms operated, selectivity was high
and total prey consumed dropped to even lower values [one-way ANOVA across the four behavioral scenarios, p � 0.0001; ���p �
0.001 relative to all other learning/satiation scenarios (Tukey–Kramer, n � 6 trials in each)]. Differences in selectively between the first
three learning/satiation scenarios, or in prey consumption where satiation was inactivated, were not significant (p � 0.05) Error bars
are SEM. See text for further explanation.
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sumed between the two satiation and two no-satiation
scenarios, while enhancement of prey selectivity de-
pended on learning and satiation acting together. Thus, in
tests where both learning and satiation mechanisms were
inactivated, average total prey taken was 701 (SEM 6.22),
of which 21.2% (SEM 0.6%) were Hermis, slightly less
than their 23.1% frequency in the population. This yielded
a selectivity value (total Hermis taken/total Flabs taken) of
0.27 (SEM 0.01), less than the 0.30 ratio of Hermis to
Flabs in the population. This effect appeared due to a
greater frequency of random clustering in the denser Flab
population, leading to more frequent multiple consump-
tions of Flabs than Hermis. When learning was activated
without satiation, average total prey taken was still high at
707.8 (SEM 5.5), of which 21.2% (SEM 0.6%) again were
Hermis with still a low selectivity of 0.27 (SEM 0.01).
Without learning, satiation alone reduced average prey
consumed to 119 (SEM 0.52) with 24.1% (SEM 1.2%)
Hermi, and with low selectivity of 0.32 (SEM 0.02).

Acting together, learning and satiation mechanisms led
to an averaged total of 91.7 (1.43 SEM) prey taken, where
82.5% (SEM 1.5%) were Hermi. The selectivity coefficient
of 4.96 (0.6 SEM) was a �18-fold increase over the values
obtained without learning and/or satiation.

When tests were made in a field of 13 Flabs alone, with
both learning and satiation intact, the averaged total prey
taken was 53.3 (0.33 SEM). This low but nontrivial value
reflected decisions to take noxious prey in a condition of
extreme hunger, and also demonstrated combined effects
of learning and satiation in reducing consumption of nox-
ious prey (not shown). When similar runs were made in a
field of 13 Hermis alone, the averaged total prey taken
was 143.5 (0.81 SEM). The contrast of this value with the
all Flab condition highlighted effects of positive versus
negative learning in prey selection, as well as effects of
satiation in limiting consumption. There were significant
differences in number of prey consumed across all three
arenas (p � 0.0001 in a one-way ANOVA; Tukey–Kramer,
p � 0.001, among all three pairs).

Discussion
The Cyberslug autonomous entity bases behavioral

choice and perception on interactions of motivational
state and learning, like the real animal. The algorithmic
integration of sensation, motivational state, and memory
reproduces adaptive action selection in behavioral choice.
At intermediate values of satiation, the experienced Cyber-
slug agent selectively prefers or avoids the cues of benign
or noxious prey, respectively. Otherwise, at lower levels of
satiation (greater hunger) the predator is attracted to and
consumes previously learned noxious prey. Accordingly,
to forestall starvation it is economically realistic and in
agreement with optimal foraging models that selectivity
declines with decreasing satiation (Houston and McNa-
mara, 1985). At higher satiation it actively avoids even the
stronger appetitive signals. In these behaviors the simu-
lation agrees with the classic, inverted U-shaped function
relating arousal state to performance (Hebb, 1955), and
reproduces major behavioral aspects of the real predator
(Gillette et al., 2000; Noboa and Gillette, 2013).

The individual contributions of satiation and learning are
naturally significant. However, the importance of their
interactions in prey choice is well illustrated (Fig. 4). With-
out either one of satiation and learning, the unrestrained
virtual predator takes in great quantities of either prey.
This can be maladaptive to a real predator, where taking
more high-quality prey than safely handled by digestion is
physiologically threatening. Satiation limits the number of
prey taken, but without learning noxious prey species are
taken indiscriminately. Learning prey values promotes
specific exploitation of the benign species and reduces
attempts on the noxious species to periods of near-
starvation, when a potential small benefit could be impor-
tant to survival.

In Cyberslug, as in Pleurobranchaea, appetitive state is
the continuous integration of sensation, internal state, and
memory, and it sets the thresholds for expressing goal-
directed behavior. Cyberslug summates the variables as
appetitive state in the core Equation 6 to yield output that
can switch avoidance responses to approach. Sensory
integration in the model accomplishes two critical actions:
evaluating the sensory stimuli as incentive, and providing
a spatial map of stimulus location. Thus, incentive sums
the primary odor nutritional signal (betaine) with positive
and negative qualities learned from previous encounters
with the initially neutral, specific odor signatures of its
prey (Eq. 4.1).

In the absence of incentive input to the feeding network,
appetitive state is solely dependent on the motivational
variable satiation. However, with incentivized sensory in-
put appetitive state becomes equivalent to “incentive sa-
lience” as defined in rodents and primates (Berridge and
Robinson, 2016), where goal-oriented desire becomes
tightly linked to reward cues and is critical to establishing
preferences. The fuller concept of “motivational salience”
regulating the attraction or aversion to objects in mam-
mals (Puglisi-Allegra and Ventura, 2012) emerges in the
present model with regulation of the approach-avoidance
switch by appetitive state. Thus, the model illustrates how
the salience of a stimulus may interact with motivational
state and learning to determine its attractiveness or aver-
siveness.

Stimulus mapping is analogous to that done in the
peripheral nervous system of the animal’s oral veil (Ya-
fremava and Gillette, 2011): a virtual place code repre-
sents the averaged location of an odor stimulus as
Somatic_Map, and incorporates an analog of lateral inhi-
bition as seen in the animal (Eq. 3.1). This provides a
template to map the motor output of the turn angle re-
sponse, much like functions of superior colliculus and
cortex in vertebrates.

Cyberslug implements essential elements of an affec-
tively controlled, primitive type of immediate (or “anoetic,”
unknowing) consciousness (Tulving, 1985) whose ex-
perience is largely a moment-to-moment event. It is a
rudimentary form postulated as an evolutionary precur-
sor to higher conscious functions of self-awareness in
contexts of semantic and episodic memory (Tulving,
1985; Denton et al., 1999; Vandekerckhove and Pank-
sepp, 2011; Vandekerckhove et al., 2014). In more com-
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plex animals, the simple immediate consciousness
persists in the subpallial mechanisms that generate mo-
tivation and reward to drive homeostatic behavior, and
which thereby sustain and direct the higher cognitive
functions (Vandekerckhove and Panksepp, 2011). The
rules governing choice in Pleurobranchaea and Cyberslug
may resemble a core type of decision module present in
ancestors of the major bilaterian lineages, before the evo-
lution of the complex brains and behaviors that accom-
panied segmentation, articulated skeletons, and greater
behavioral involvement in reproduction (Gillette and
Brown, 2015). In the vertebrates, control of approach-
avoidance decision is a basic function of the basal ganglia
and hypothalamus. In arthropod nervous systems, these
functions are performed by antennal lobes and mushroom
bodies, which may conserve homologous structures as
well as analogous functions (Strausfeld and Hirth, 2013).
The feeding network in Pleurobranchaea combines func-
tions of vertebrate hypothalamus and basal ganglia for
motivation, incentive comparison, and selection of mo-
tor actions. The more complicated and modularized cir-
cuitries in vertebrates and arthropods reflect more
complex bodies and lifestyles, but their brains were likely
built onto a basic structure as shown here.

Little previous evidence has been found for empirically
driven neuroeconomic simulations such as this one. How-
ever, it is notable that the innovative 1996 videogame
Creatures used a bottom-up approach to AI character
development, combining basic concepts of motivation
and drive with Hebbian-like learning mechanisms in large
artificial neural networks to achieve interesting behavior.
This simulation is designed for transparency and interac-
tiveness. Users may discover diverse, and perhaps unex-
pected, emergent properties for forager decision and prey
vulnerability by altering their densities, particularly with
the Batesian mimic, and by altering properties in the code.

The simple relations on which Cyberslug runs are read-
ily adaptable to faster-executing computer languages,
fine graphics, artificial neural networks, and neuromorphic
representations. The present simple presentation of Cy-
berslug’s behavior in real time is intended to offer ready
accessibility to a broad audience. The core decision mod-
ule is open to practical improvements in learning algo-
rithms, including addition of mechanisms for behavioral
habituation and sensitization. More potential is present;
for instance, the model embodies an essential character
of the addictive process in incentivization, and might with
little modification reproduce the sequelae of addiction,
withdrawal, and cravings.

The homeostatic circuit relations underlying hunger
drive in Cyberslug and Pleurobranchaea are adaptable to
acquiring other resource types, such as hydration, salt
balance, shelter, play, and social interactions, to name a
notable few common to vertebrates. Truly intelligent and
sentient virtual entities, defined in terms of empathic com-
munication and abstract thought, may not yet exist be-
cause they lack the constellation of autonomy, motivation,
valuation, emotion, and social awareness (cf. also Minsky,
2006). Of these, Cyberslug supplies essential aspects of
autonomy, biologically based motivation, and valence

assignment. It is reasonable that cognitive and social
features might be added in simple piecemeal fashion
following an evolutionarily plausible course, guided by
comparative reference to invertebrate and vertebrate spe-
cies that vary incrementally in their cognitive and social
expressions with complexity of lifestyle. Of necessity in
evolution, most valuation and decision processes in the
economies of complex social animals would have been
elaborated onto pre-existing, simpler decision modules
for homeostasis, like those of Pleurobranchaea and other
simple invertebrate foragers. The present relations are
similarly open to embellishment in simulation.
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