

Agent-based model of rhino poaching
Model description

Jacob van der Ploeg (S2970783)
vanderploeg.jacob@gmail.com
University of Groningen, Master of Sociology (criminology)

Internship Netherlands Institute for the Study of Crime and Law Enforcement
Supervisors: Michael Mäs (RUG) and Andrew Lemieux (NSCR)
Model development by Nick van Doormaal (NSCR)

Amsterdam, May 2017

Table of contents
Introduction ... 3

1 - Interface ... 3

2 - Set-up ... 5

2.1. Park ... 5

2.2. Human agents .. 7

3 - Agent movement .. 8

3.1. Rhino behavior ... 8

3.1.1. Rhino-decision-making .. 8

3.1.2. Rhino-movement ... 9

3.1.3. Other rhino behavior ... 10

3.2. Poacher behavior.. 10

3.2.1. Poacher-journey-to-crime ... 10

3.2.1.1. Poacher-decision-making ... 11

3.2.1.2. Poacher-movement .. 12

3.2.2. After the crime .. 12

3.3. Ranger behavior ... 13

3.3.1. Ranger-decision-making .. 14

3.3.2. Ranger-movement ... 14

3.3.3. End of patrol and planning of new patrol ... 15

3.4. Patches ... 16

Literature ... 16

Glossary .. I

3

Introduction: rhino poaching agent-based model description
The rhino poaching model is an agent-based model simulating the dynamic interaction between three
agents involved in a particular form of wildlife crime: active poaching. The included agents are rhinos,
poachers and rangers. Each individual agent operates on specific decision rules set for each agent
group, based on their environment which includes and is affected by other agents. The interaction
between agents in this crime process is described as the triple-foraging process by Lemieux (2014). All
agents are directed by the resource they are “foraging” for: animals look for food and water, poachers
look for animals and rangers look for poachers. This model is meant to help understand the variables
affecting the outcomes of this process and identify environmental characteristics and behavioral rules
of relevance. It can be used to find optimal ranger strategies to keep alive as many rhinos and arrest
as many poachers as possible, under varying environmental circumstances and dealing with various
poaching strategies.

In this document the model and its guiding principles will be explained to help understand the model
outcomes and identify new lines of inquiry that can be studied using this tool. Relevant code can be
found in the model’s code tab via the procedures drop-down menu. In some places it will be added in
this document. The interface that is shown when first opening the model and the use thereof will first
be described, followed by the setup of the world and initialization of its agents and finally the decision
rules these agents operate on. At the end of the document a glossary is added, giving a brief description
of a number of terms in the model.

1 - Interface
Relevant code: setup-park, setup-humans

This paragraph gives a first basic introduction to the model as seen when first opening it. Details of
procedures and variables are discussed in paragraphs on the world and agents specifically. When
opening the model the interface shows an empty (black) world in which the simulations will be
presented (figure 1). The grey buttons in the top left are used to set up the world by creating its

Figure 1: Model interface before setup.

4

variables. Each of these buttons calls on a procedure in the code to create the world and also run the
simulation (the symbols in the upper right corners of these buttons are keyboard action keys). The
green sliders, drop-down menu’s and entry boxes allow for setting variable values and determining
patrol type, before setting up the world. The graph to the right plots the count of surviving rhinos. If
relevant as an outcome measure a poacher count can be added: right click the graph > add pen > pen
update commands: plot count poachers.

The first step in using the interface is to determine the values for each of the variables in the green
interface items (default values can be maintained for understanding the model and going through this
description). The sliders determine characteristics of the world and agents, whereas the drop-down
menu’s let you choose how to run and visualize the simulation. Values in the entry boxes are used in
the equations for each agent’s decision rules, allowing the user to alter relative importance of variables
for each of the agents. After the variables have been set the 1) setup park button is used to create the
environment (called park or reserve in this document). This button calls on procedures that set
variables which are the same for each agent (globals). These include resource regrowth rate (sprout-
delay-time, which is given a base rate of 100 ticks), maximum roughness of a patch (5), rhino sign decay
rates (500) and the rhino-weight which is the sum of variables in the rhino’s decision rule (determined
in the entry boxes). Furthermore it calls on the procedures that create the park resources, set its
roughness, release the rhinos and set rhino home ranges.

At this stage, when selecting the resources_colors
option from the visualization menu, you see a world
with varying shades of green that represent the
resource levels in each patch. Brown patches
represent the sandy areas. When having selected the
rhino_home-ranges visualization you see the same
world with colored areas around each rhino agent.
These represent their home-ranges, which will expand
as they start moving (as shown in figure 2). Finally
selecting the rough_areas visualization shows you red
circles that fade out from the center, representing the
number of rough areas determined in the slider. The
black patches surrounding the park represent a hard
border which cannot be crossed by the animal agents
and do not contain resources. Note: when the
simulation is running you can alternate between these
visualizations. If you want to change the visualization
at this stage of the set-up you need to press setup park
again after making your changes.

The following step depends on a number of choices. If you want to manually place the ranger camps
select we-decide from the camp-placement menu. Now click 1b) Create-camps (or press C) and select
a patch where you want to place a camp. Repeat this for every camp. The default setting allows you to
skip this step as it places the camps randomly with a certain buffer to avoid being placed too close to
one another: select random in camp-placement (button 1b) create-camps can then be ignored). For
running NetLogo experiments this is more userfriendly than manually selecting camp locations. When
running experiments it may be preferrable to first run the simulation with only rhinos in the park. This
allows for a learning period in which the rhinos can establish their home range. To do so click 2a –
Setup Rhinos (or press R). The rhinos will now start moving for 1000 ticks. Alternatively you may have
all agents start together. To do so ignore 2a – Setup Rhinos and proceed to 2b – Setup Humans (or
press A). This button calls on the procedure to create camps as well as enter rangers and poachers

Figure 2: View of the park showing resources
(shades of green), borders (black), rhinos (agents
in various colors) and home ranges (in color of
corresponding rhino).

5

(when camp-placement is set to random). Camps are shown as red houses with
a resource-empty buffer around them which prevents rhinos swarming to them
(figure 3), ranger agents are green and poacher agents – which enter at the
border – are blue. Finally you may now press go to set the world in motion. The
go button with the circular arrows runs the simulation continuously untill
stopped by the user, a lack of rhinos, a lack of poachers or the passing of 10000
ticks. The other go button moves the world one tick at a time, better allowing
users to see changes.

So what makes this world and its agents tick? The following chapters will describe the world’s
environment with all its variables, the agents and what decision rules and equations are used for their
movement.

2 - Set-up
2.1. Park
Relevant code: setup-park (button 1 setup park), calling create-park, create-rough-areas,
release-rhinos, setup-home-range and corresponding sub-procedures.

When setting up the world the procedure create-park is called to
set the contents and characteristics of each patch. Some of these
may be seen in figure 4 which shows the information you get when
right-clicking a patch and selecting inspect. It is here that the global
variables sprout-delay-time, max-roughness and rhino-activity-
decay are set at 100, 5 and 500 ticks respectively. Patches are
designated inside the reserve when they have 8 neighboring
patches, thereby excluding only the border patches which are
made black and are given a resource value of 0. All patches start
out belonging to nobody, which may change when at a later stage
included in a rhino territory as it moves through the patch. At this
stage all patches are given a roughness value of 1 in a range of 1-
5, with 1 being low roughness and therefor easiest (faster) to move
through (see agent movement). Each patch is given a random
amount of resources represented by a value between 0 and 1. This
variable value is diffused to its neighbors to create smoother, more
natural gradients (diffuse resources 0.4): as such each patch
gets 1/8 of 40% of its resources from each of its neighbors. The
patches are given a color along the green shade with light green
representing low resources and darker green representing higher
resources (procedure color-resources). Furthermore each
patch is given a countdown made up of the sprout-delay-time plus
a random number of ticks between 0 and 100. This makes for
varying regrowth of resources across the park. A percentage of
patches is made sandy (brown), as determined by the slider in the
interface, also having a resource value of 0.

With this setup the create-rough-areas procedure is also called. The number of rough areas, also
specified with a slider, is the number of patches that are given the maximum roughness value of 5. The
patches surrounding these max-value patches are subsequently selected and given a roughness value
within the 1 - 5 range, based on their proximity to the max-value patch. This fades out the roughness
in a circle with the highest value patch in the center:

Figure 3: Ranger camp

Figure 4: Patch information (center
patch)

6

ask n-of rough-areas patches with [inside? = TRUE] [

set roughness max-roughness

ask patches in-radius (max-roughness - 1) [

 set roughness round (max-roughness - distance myself + roughness)

…]

This roughness variable is later used to determine movement speed through, and attractiveness of
patches. When the color-rough-areas visualization is selected, patches with roughness greater than 1
are colored red, increasing in darkness as roughness gets higher.

The remaining patch-owned items that can be seen in figure 4 are (partly) set by agents and will be
discussed when their setup and operating is described. Park setup also releases rhinos into the world
(release-rhinos). The first step sets the rhino-weight value which is later used for rhino movement
as part of the patch-attractiveness. It consists of the sum of rhino avoidance, roughness and resource
weights that are entered by the user in the interface.

Eq. 1) rhino-weight = rhino-avoid-weight + roughness-weight + resources-weight

Then to enter the rhinos a number of patches equal to the number of rhinos specified with the slider
sprouts 1 rhino agent. No other agent may be on a patch in a radius of 5 for a rhino to sprout
somewhere. It is here in the code that some of the rhino-owned variables are created: rhino-memories
are patchset consisting of a list of the 3 previously visited patches (at this stage of the setup only the
current location). They are also given a goal, which will later be used to direct their movement: this is
set to the current patch. Finally the release-rhinos procedure calls on the spread-rhinos

procedure to further establish their territoriality. Rhinos that need further spreading are those that
have an agent in a radius of 10 patches (note that at this stage these agents only include other rhinos).
If there are patches available that have no other rhinos in a 10 patch radius, these rhinos move there.
If no such patches are available the spreading rhinos move to any unoccupied patch within the reserve:

to spread-rhinos

let spreading-rhinos rhinos with [any? other turtles in-radius 10]

if any? spreading-rhinos [

 ask one-of spreading-rhinos [

 let available-patches patches with [inside? = TRUE and not any? other

 turtles in-radius 10]

 ifelse any? available-patches [

 move-to one-of available-patches

 spread-rhinos]

 [move-to one-of patches with [inside? = TRUE and not any? other turtles-

 here]]

]]

The final remaining procedure being called by setup-park also deals with rhinos. Setup-home-range
determines in part what happens to patches as rhinos enter the world. All patches within a radius of
1.5 patches around a rhino are set as its rhino-territory, and will belong to this agent. As rhinos start
moving this home range will expand and meet with other home ranges and rhinos, party directing
rhino movement (discussed in the paragraph on movement rules for the agents). If a random value
between 0 and 1 is below 0.5 a rhino visited patch is given signs of recent-rhino-activity. The rhino-
activity-decay rate now is set at the previously determined minimum of 500 ticks plus an additional
random amount between 0 and 500 ticks. This creates varying (amounts of) signs.

You may notice another patch-owned variable in the menu of figure 4 is called patch-attractiveness.
As this is in part determined by agents that have not been introduced yet it will be discussed at a later
stage. As the result of a number of variables for each specific agent type and used to create weighted
probability of selection of that patch as the next movement goal it is crucial in agent movement.

7

2.2. Human agents
Relevant code: setup-humans (button 2b setup humans), calling build-camps, distribute-camps,
release-rangers and release-poachers

The human agents enter the world through a separate procedure to allow for running the rhino only
learning period: setup-humans. Human agents are poachers and rangers who, like rhinos, leave signs.
The most persistent of these signs is a carcass that is left after a poacher is successful in killing a rhino.
Its decay rate is set to 10000 ticks, equal to the maximum number of ticks in the simulation and as such
permanently visible. Human activity signs are left in a similar way to rhino signs with a decay rate of
200 ticks. Similar to rhinos the poacher- and ranger-weights used for movement decision making as
part of patch-attractiveness are set here, consisting of user entered weights for the relevant variables.
(The + 1 in equation 3 is to make ranger patrols avoid one another).

Eq. 2) poacher-weight = (ranger-avoid-weight * 2) + hunt-rhino-weight + roughness-weight +
resources-weight

Eq. 3) ranger-weight = 1 + search-rhino-weight + roughness-weight + catch-poacher-weight

The first procedure called by setup-humans builds the camps from which the rangers operate, shown
as houses. When placement is random a number of patches equal to the number of camps specified
with the slider will sprout 1 camp. When placement is fixed the camps are placed on a number of pre-
specified patches with a small degree of randomness. Finally, manually placing the camps uses the
procedure click-camps which is called by button 1b create camps and places a camp on mouse-clicked
patches. After placing the camps distribute-camps is called to avoid cluttering which would negate
some effects of additional camps. Code similar to the spreading of rhinos is used to let camps that are
within a radius of 10 patches of another camp move to a patch without camps its radius. If no such
option is available the camp is placed on a random patch within the park. This procedure also asks
camps to set resources in a radius of 4.5 patches around them to 0, thereby avoiding cluttering of
rhinos around what may become relatively safe havens and unnatural attraction of rhinos to human
hotspots.

Rangers, as green human figures, now enter the world. The number of rangers is specified by the slider,
and for each of them one of the camps is asked to hatch one ranger agent. These rangers own a patrol-
memory of previously visited patches (set to no-patches), patrol-time recording the duration of current
patrol, memory of risky-areas and safe-areas where poacher signs have and have not been detected
by this ranger (both set to no-patches at this stage), memory of rhino-sightings (set to no-patches) and
a waiting period between patrols known as off-duty-time and defined as (patrol-length * 2) + random

100 (a random value between 0 and 100). Like rhinos, they too have a goal which is to be used for
movement later (currently the current patch patch-here). The state of rangers, which tells you
whether they are on patrol or off-duty, are set to patrolling upon release. These states allow for calling
corresponding movement procedures (i.e. if state is patrolling …).

Finally setup-humans calls on the procedure to release-poachers. A number of patches outside the
reserve (black border patches) equal to the number of poachers that has been set by the slider sprouts
1 poacher, shown as a blue human figure. Like rangers and rhinos these poachers own a number of
attributes. The time measures how long they have been inside the reserve (at this stage set to 0 ticks),
a laylow period describes the time they wait in between hunts and is defined as (poacher-time * 2) +

random 100. Furthermore, they have memories storing their good hunting grounds (good-sites),
success-sites, failure-sites and previous hunting trips named poacher-memory (all set to no-patches at
this stage). Like the other agents they too have a goal (current-patch), and a state similar to rangers
to describe if they are in the process of hunting or laying low. At this entry stage, the poacher states
are set to journey-to-crime. These states again correspond to relevant procedures for agent actions.

8

3 - Agent movement
Relevant code: go (go and setup rhinos buttons), calling rhino-goal-check, update-rhino-memory,
rhino-foraging-and-home-range, poacher-goal-check, poacher-laylow, ranger-goal-check,
ranger-end-patrol, update-resources, update-home-range, update-visualization, update-
activity-signs and (many) corresponding sub-procedures.

As described in the interface paragraph it is possible to run the world with rhinos only (button 2a). The
rhinos and patches are then called to run the same procedures as when simply running all agents at
once with the go button (despite their names the setup rhino buttons and procedure do not set up this
agent type in the same way as the poachers and rangers are set up in the so called procedures, as
rhinos are initialized in the create-park procedure. Setup rhino refers here to the learning period that
allows rhinos to establish themselves). As such, the movement will be described in order of the go
procedure, noting that the setup-rhino procedure and button call the same rhino and patch
procedures for a duration of 1000 ticks (rhino-goal-check, update-rhino-memory, rhino-
foraging-and-home-range, update-resources, update-home-range, update-visualization and
update-activity-signs).

The first thing established in this procedure that starts the simulation is when said simulation should
end. If no rhinos or poachers remain, or when 10000 ticks have passed the run halts. The 10000 ticks
can be thought of as representing a year when related to the time available for rangers to patrol and
poachers to hunt.

To set the agents in motion the first thing that is determined for all types is the movement speed:
Each agent is given a waiting time related to the roughness of the current patch (ticks-to-stay-on-patch
= roughness - 1). All agents own another variable called ticks-wait, which is set equal to ticks-to-
stay-on-patch when roughness is greater than 1 and counts down - 1 every tick. As such an agent on
a patch with roughness value 5 waits 4 ticks before moving on to the next patch (counted down by
ticks-wait), whereas an agent on a patch with roughness value 1 moves the very next tick. This is coded
in each agent’s goal-check procedure, called by go, given here for the rhinos:

to-report ticks-to-stay-on-patch [p]

 report roughness - 1

end

to rhino-goal-check

ifelse ticks-wait > 0 [

 set ticks-wait ticks-wait - 1]

…

if (roughness > 1)

 [set ticks-wait ticks-to-stay-on-patch patch-here]

]

end

3.1. Rhino behavior
The goal-check procedures then further determine the agent’s movement following more agent type
specific procedures. This paragraph first describes the rhinos, followed by poachers and rangers.
If the rhino is on its current goal patch the rhino-decision-making procedure is called, in which the
next goal is determined for the rhino to move to. Remember the goal at initialization was set to
patch-here suggesting the goal has been reached. The first thing that happens is thus the selection
of a new goal. Alternatively, when the rhino is not on its goal patch it follows that it is moving
towards a previously set goal and the rhino-movement procedure runs.

3.1.1. Rhino-decision-making
To determine where to go (set a goal) each rhino looks at his surroundings, which are defined as all
patches within a 2.5 radius that are within the park, outside its current home range and not recently

9

visited (i.e. included in its rhino-memory consisting of the last 3 patches visited). The patch-
attractiveness of the patches in these surroundings is determined using the user-entered weights of
the variables; negatively valuing roughness and positively valuing resources.

ask surroundings [

let estimated-roughness ((max-roughness - roughness) / max-roughness) *

roughness-weight

 let estimated-resources resources * resources-weight

 …

Also included in the patch-attractiveness is the rhino-dist(ance) which consists of the user-entered
rhino-avoid-weight multiplied by the distance of the nearest rhino.

to-report rhino-dist

 ifelse any? other rhinos [

 let max-rhino-dist distance min-one-of other rhinos [distance myself]

 ifelse max-rhino-dist = 0 [

 report 0]

 [report (distance min-one-of other rhinos [distance myself] / max-rhino-

 dist) * rhino-avoid-weight]

]

 [report 0]

end

The patch attractiveness then consists of the sum of these values divided by the rhino-weight from
equation 1 (rhino-avoid-weight + roughness-weight + resources-weight).

ask surroundings [

…

set patch-attractiveness (estimated-resources + estimated-roughness +

rhino-dist) / rhino-weight

]

Attractiveness of patches belonging to other rhinos is minimized by:

ask surroundings with [rhino-territory != myself and rhino-territory

!= nobody] [

 set patch-attractiveness patch-attractiveness / 10]

Which does not exclude these patches as options. It is possible for rhinos to overtake another rhino’s
home range. Finally, the goal can now be set. To do so a NetLogo extension is used, which was added
in the very first line of the code: extensions [rnd]. Now using rnd:weighted-one-of a random patch
is selected from the surroundings agentset, with a selection probability based on the patch-
attractiveness. If the resulting patch is a neighboring patch, the rhino will move there. If instead the
resulting patch is further away in the 2.5 radius, the rhino will move towards it using the rhino-
movement procedure (introduced at the start of the rhino movement paragraph as the procedure used
when rhinos are not on their goal patch).

3.1.2. Rhino-movement
For moving towards the goal, similar procedures are used as when moving to the goal. First, the
surroundings are defined as all neighboring patches within the park. Then the same formulas are used
to determine patch-attractiveness, now also incorporating distance to the goal (goal-dist) and the
user-entered weight of said goal. This again determines patch-attractiveness, minimizing other rhino
territories, and selecting a patch using weighted probabilities. The inclusion of the goal and the weight
thereof make for a greater likelihood of moving towards the set goal than elsewhere:

10

to rhino-movement

 let surroundings neighbors with [inside? = TRUE]

 let max-goal-dist distance rhino-goal

 ask surroundings [

 let goal-dist (max-goal-dist - distance [rhino-goal] of myself) * goal-

weight

let estimated-roughness ((max-roughness - roughness) / max-roughness) *

roughness-weight

 let estimated-resources resources * resources-weight

 set patch-attractiveness (goal-dist + estimated-resources + estimated-

roughness + rhino-dist) / (rhino-weight + goal-weight)

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]

]

 ask surroundings with [rhino-territory != myself and rhino-territory

!= nobody] [

 set patch-attractiveness patch-attractiveness / 2]

 move-to rnd:weighted-one-of surroundings [patch-attractiveness]

end

3.1.3. Other rhino behavior
Continuing the go procedure, after the extensive rhino-goal-check and rhino-movement to make
rhinos move, calls update-rhino-memory and rhino-foraging-and-home-range. The former makes
each rhino save its current patch in its memory. When three patches have been saved, a fourth results
in the first being removed, whereby the rhino-memory consists of the last 3 patches visited. Its use has
already been described in paragraph 3.1.1. on rhino-decision-making where it makes sure rhinos do
not end up in an infinite loop moving back and forth between the same two patches; as it avoids
patches stored in its memory. The latter of these two procedures, rhino-foraging-and-home-range,
describes the effect of the rhinos on their environment: the patches. Resources on each rhino’s current
patch diminish by a percentage set by the slider (equation: set resources (resources * ((100 - forage-

amount) / 100))) to represent grazing and a countdown is set to match the sprout-delay-time of 100
ticks before resources can grow back. Furthermore the current patch is added to the rhino’s home
range. These home-ranges are given the color of the corresponding rhino and can be monitored in the
home-range visualization. Another effect the rhinos have on the patches is the previously described
leaving of signs (paragraph 2.1.).

3.2. Poacher behavior
To run the simulation the go procedure naturally also sets the poachers in motion. Similar to rhinos
this is directed by setting a goal, checking fulfilment thereof and moving to or towards it (poacher-
goal-check and poacher-movement). Poacher movement it tracked by entering pen-down. If poachers
do not need to “wait” as a consequence of rough terrain, when they have time left to hunt and when
they have yet to obtain a rhino horn (successful kill) their state is set to journey-to-crime and the
procedure poacher-journey-to-crime is called. If time has run out (set by slider) or the hunt was
successful, the state is set to journey-after-crime and the procedure poacher-journey-after-
crime is called to make poachers leave the park via the shortest route. The poacher-goal-check also
contains the code for leaving signs at a probability of 0.5, and keeps the time for these agents (+1 every
tick, which when matching the available poacher-time results in park departure).

3.2.1. Poacher-journey-to-crime
Poachers set as a target one of the rhinos that is within a radius specified by the poacher-vision
slider. If such a target is within 1.5 radius of the poacher, he moves there and kills the rhino, as per the
poacher-kills-rhino procedure. The poacher is then on his goal patch and adds it to his patchset of
success-sites. A permanent poacher sign is left in the form of a carcass. If the poacher is on his goal
patch the poacher-decision-making procedure is called, which is similar to its rhino counterpart in
that it sets a new poacher goal and makes the poacher move towards it. Again, the alternative is that

11

the poacher is still in the process of moving towards his previously set goal and poacher-movement is
called. The patches visited during the journey to the crime are stored in the poacher-memory, which is
cleared upon a successful kill to only remember the kill site itself. Of these route patches those with
> 0 rhino signs and 0 ranger signs are stored in the good-sites memory and those with ranger signs > 0
are stored as failure-sites (good- and failure sites overwrite one another so the most recent visit is
leading).

3.2.1.1. Poacher-decision-making
In deciding where to go poachers first identify nearby-rangers as a turtle-set consisting of all rangers
and ranger camps within the poacher-vision radius. When either rangers or camps are within this
radius, the patches are added to the failure-sites patch-set and the poacher proceeds with journey-
after-crime to leave the park. Like rhinos, poachers also set surroundings from which to select their
next destination. These are all those patches within the poacher-vision that are inside the park. In
these surroundings a number of parameters are created that then make up the patch-attractiveness
for poachers, similar to the rhino procedure:

let surroundings patches in-radius poacher-vision with [inside? = TRUE]

ask surroundings [

let rhino-signs (recent-rhino-activity / (rhino-activity-decay * 2)) *

hunt-rhino-weight

let nearby-ranger-signs ((human-signs-decay - ranger-signs) / human-signs-

decay) * ranger-avoid-weight

let estimated-roughness ((max-roughness - roughness) / max-roughness) *

roughness-weight

 let estimated-resources resources * resources-weight

 set patch-attractiveness (ranger-dist + rhino-signs + nearby-ranger-signs +

estimated-resources + estimated-roughness) / poacher-weight

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]

]

Where ranger-dist reports the nearest ranger, incorporating the user entered ranger-avoid-
weight.

to-report ranger-dist

 let nearby-rangers (turtle-set rangers camps)

 ifelse any? nearby-rangers [

 let max-ranger-dist distance min-one-of nearby-rangers [distance myself]

 ifelse max-ranger-dist != 0 [

 report (distance min-one-of nearby-rangers [distance myself] / max-

ranger-dist) * ranger-avoid-weight]

 [report 0]

]

 [report 0]

end

Again, the attractiveness of those patches that have been visited very recently is minimized.

ask surroundings with [member? self [poacher-memory] of myself] [

 set patch-attractiveness patch-attractiveness / 10

Like in rhino movement, a goal patch is then designated within these surroundings for the poachers to
move to, with a weighted probability of selection based on patch-attractiveness. If such a goal patch
is a neighboring patch the poacher will move there, if it is further away in the specified radius he will
move towards it using poacher-movement.

12

3.2.1.2. Poacher-movement
The poacher-movement procedure also specifies as nearby-rangers those rangers and camps within
the poacher-vision. In the same way that rhino-movement uses a similar approach as rhino-
decision-making, poacher-movement uses the same setup as poacher-journey-to-crime. What is
added to the patch-attractiveness is again the distance to the goal that has been set and the weight
thereof:

let max-goal-dist distance poacher-goal

 ask neighbors with [inside? = TRUE] [

 let goal-dist (max-goal-dist - distance [poacher-goal] of myself) * goal-

weight

 let rhino-signs (recent-rhino-activity / (rhino-activity-decay * 2)) *

hunt-rhino-weight

 let nearby-ranger-signs ((human-signs-decay - ranger-signs) / human-

signs-decay) * ranger-avoid-weight

 let estimated-roughness ((max-roughness - roughness) / max-roughness) *

roughness-weight

 let estimated-resources resources * resources-weight

 set patch-attractiveness (goal-dist + estimated-resources + estimated-

roughness + ranger-dist + rhino-signs + nearby-ranger-signs) /

(poacher-weight + goal-weight)

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]

]

 let surroundings neighbors with [inside? = TRUE and not member? self

[poacher-memory] of myself]

 ifelse any? surroundings [

 move-to rnd:weighted-one-of surroundings [patch-attractiveness]]

 [move-to rnd:weighted-one-of neighbors with [inside? = TRUE] [patch-

attractiveness]]

end

3.2.2. After the crime
Poacher-journey-after-crime describes what happens after a poacher has been successful in killing
a rhino, when poacher-time has run out or when he wants to leave the park for spotting a ranger. In
each of these cases the poacher goal is set as the nearest patch that is outside the reserve. If that is a
neighboring patch the poacher will move there and if it is further away he will face towards it and
move there one patch at a time. When the poacher state is set as journey-after-crime and the poacher
has reached his goal patch he has successfully escaped the park. The laylow period now starts counting
down. This is set as (poacher-time * 2) + random 100. Upon reaching 0 poacher-plan-new-trip is
called.

To plan a new trip the good- and success-sites from poachers memories are designated as good-options
(patch-set). If no such patches are available to a poacher he chooses a random patch along the border
that is not part of his failure-site patch-set memory and starts from there. If good-options are available
rnd:weighted-one-of is again used to make a weighted decision on where to plan the trip to. The
new-trip-weight is made up of the user-entered success-weight + hunt-rhino-weight + ranger-avoid-
weight, to allow prioritizing in this planning stage. Patch-attractiveness for the new trip is then made
as follows:

13

ask good-options [

 let recent-rhino-kill (poacher-signs / carcass-decay) * success-weight

 let detected-rhino-signs (recent-rhino-activity / (rhino-activity-decay

* 2)) * hunt-rhino-weight

 let detected-ranger-signs ((human-signs-decay - ranger-signs) / human-

signs-decay) * ranger-avoid-weight

set patch-attractiveness (recent-rhino-kill + detected-rhino-signs +

detected-ranger-signs) / new-trip-weight

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]

]

The best-option is the patch in the good-options set that scores highest on patch-attractiveness. To
allow some explorative poacher behavior, instead of only revisiting sites from memory, this best-option
is compared to a random value between 0 and 1. If this random value is below the best-option’s patch-
attractiveness the poacher will select a patch from the good-options within a 1.5 patch radius as
movement goal, with a weighted probability based on their patch-attractiveness (rnd:weighted-one-
of). The poacher then starts his trip at the border patch nearest to this goal. This simulates a poacher
remembering a good site, with some degree of variability deciding whether to revisit that site and upon
deciding so opting for the shortest route through the park. If on the other hand the random value is
higher than the best-option’s patch-attractiveness a random entry point and goal are selected.
Following this the poacher’s state is again set to journey-to-crime to start the trip: his laylow period is
reset (using (poacher-time * 2) + random 100), his time counter is reset to 0, his memory is cleared and
his goal is set to the current patch.

3.3. Ranger behavior
The final agent that remains at this stage is the ranger, whose movement is also initiated by go and is
very similar to that of poachers, again being tracked by the pen-down command and with roughness
based speed set just like the other agents. Where poachers set rhinos as their target and move there
to go for the kill, rangers set one of the poachers in the user-set ranger-vision and within the park as
their target. If such a target is present, the rangers-catch-poachers procedure is called. Like
poachers, rangers have a number of “states” that call their actions. If there is patrol-time left rangers
can either be in the process of patrolling or follow-up. In case of the former the type of patrol is first
determined as either standard-patrol or fence-patrol and the corresponding procedures are called. In
case of the latter the ranger-follow-up procedure is called. Alternatively, when no time is left the
ranger state is set to back-to-camp and the procedure ranger-to-camp is called: when the patrol-time
counter exceeds the user-set patrol-length the ranger state changes to this back-to-camp state to call
the procedure (patrol-time is monitored similar to poacher’s time, by counting the ticks).

Rangers also have memories, storing visited patches with > 0 poacher signs and patches within his
vision that have poacher agents on them as risky-areas (i.e. a ranger can see poachers and remember
where without depending on visiting the exact patch and monitoring the signs). Those patches with 0
poacher signs are safe-areas (again overwriting one another when needed). Rangers also store their
rhino-sightings of all rhinos on patches neighboring their own. Finally rangers leave signs at a 0.5
probability rate just like rhinos and poachers.

When a poacher is within the ranger’s vision and inside the park the ranger moves to that location and
catches the poacher (in NetLogo language the poacher “dies”). The patch is added to the risky-areas,
the ranger goal is set to the current patch (goal achieved) and ranger state is set to back-to-camp to
call the corresponding procedure. The ranger moves to the nearest camp, whereas ranger-back-to-
camp also allows for leaving the park at the border if that is closer than the nearest camp (this is
optional when ending a patrol because time has run out though not with someone in custody).

14

First however, rangers need to find poachers. When the ranger’s state is patrolling and the standard-
patrol is selected ranger-patrol is called. This is very much like the rhino and poacher decision making
procedures. When the ranger has reached his goal patch a new goal is determined that keeps him in
motion. If no goal is being determined it again follows that the agent is still moving towards its
previously set goal. The goal is set by ranger-decision-making and the movement by ranger-
movement.

3.3.1. Ranger-decision-making
Like rhinos and poachers, rangers look at their surroundings and select one patch from there as their
goal. This is again done based on a probability weighted for patch attractiveness. The surroundings for
the rangers are those patches within his ranger-vision that are inside the park and do not contain a
camp. The attractiveness consists of rhino signs, poacher signs and roughness; using the user-entered
weights for relative importance of looking for rhinos and/or poachers as well as avoiding roughness:

let surroundings patches in-radius ranger-vision with [not any? camps-here

and inside? = TRUE]

 ask surroundings [

 let rhino-signs (recent-rhino-activity / (rhino-activity-decay * 2)) *

search-rhino-weight

 let nearby-poacher-signs ((human-signs-decay - poacher-signs) / human-

signs-decay) * catch-poacher-weight

 let estimated-roughness ((max-roughness - roughness) / max-roughness) *

roughness-weight

 set patch-attractiveness (other-patrol-dist + rhino-signs + nearby-

poacher-signs + estimated-roughness) / ranger-weight

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]

]

Where other-patrol-distance uses the ranger-avoid-weight to keep patrols at some distance from one
another:

to-report other-patrol-dist

 let nearby-rangers (turtle-set other rangers camps)

 ifelse any? nearby-rangers [

 let max-ranger-dist distance min-one-of nearby-rangers [distance

myself]

 ifelse max-ranger-dist != 0 [

 report (distance min-one-of nearby-rangers [distance myself] / max-

ranger-dist) * ranger-avoid-weight]

 [report 0]

]

 [report 0]

end

Patches that have been recently visited (patrol-memory) are again made less attractive to avoid an
infinite back and forth between two patches. Using rnd:weighted-one-of a goal is now selected
based on patch-attractiveness. If that goal is directly adjacent to the current patch the ranger moves
there right away. If the goal is further away in the surroundings the ranger moves towards it, also using
ranger-movement.

3.3.2. Ranger-movement
Like rhinos and poachers the movement procedure uses the same rules as the checking and setting of
the goal, only adding the distance and weight of the goal to the parameters that make up patch-
attractiveness:

15

ask neighbors with [inside? = TRUE] [

let goal-dist (max-goal-dist - distance [ranger-goal] of myself) * goal-

weight

 let rhino-signs (recent-rhino-activity / (rhino-activity-decay * 2)) *

search-rhino-weight

 let nearby-poacher-signs ((human-signs-decay - poacher-signs) / human-

signs-decay) * catch-poacher-weight

 let estimated-roughness ((max-roughness - roughness) / max-roughness) *

roughness-weight

 set patch-attractiveness (goal-dist + estimated-roughness + other-

patrol-dist + rhino-signs + nearby-poacher-signs) / (ranger-weight +

goal-weight)

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]]

 let surroundings neighbors with [not member? self [patrol-memory] of

myself]

 ifelse any? surroundings [

 move-to rnd:weighted-one-of surroundings [patch-attractiveness]]

 [move-to rnd:weighted-one-of neighbors [patch-attractiveness]]

The alternative patrol type is the fence-patrol, called when the ranger state is patrolling and the patrol
type is set to fence patrol. Instead of calling ranger-patrol, ranger-fence-patrol is now called.
During the fence patrol rangers move directly along the fence for the duration of their patrol. When
poacher signs are found the ranger-follow-up procedure is called that makes rangers follow the
tracks by moving to neighboring patches that have poachers signs equal to or greater than 1.

3.3.3. End of patrol and planning of new patrol
The patrol ends when time has run out (or earlier when a poacher has been arrested). The state is set
to back-to-camp and the ranger moves to the nearest camp or border patch. The ranger has a waiting
period similar to the laylow time of poachers, called off-duty-time ((patrol-length * 2) + random 100),
which now starts counting down. Upon reaching 0 ranger-new-patrol is called.

The goal for this new patrol is selected from a patchset that includes the remembered rhino-sightings
and risky-areas, and explicitly excludes safe-areas. This patchset is called good-options. If no such
patches are available to a ranger a random patch that is not part of the safe-areas is selected and a
start location is selected, like poachers planning a new trip. To select the starting point ranger-start-
location is called, which selects the border or camp nearest to the set goal (unless it is a fence patrol,
which always starts at the border). This procedure also resets patrol time, memory, off duty time and
ranger goal as well as set the ranger’s state back to patrolling to call the corresponding procedures
allowing the next patrol to start.

The alternative is that good-option patches are available as a ranger has built his memory of rhino
sightings and areas that are either risky or safe. Out of the good-options a patch is again selected as a
goal, with probabilities weighted for patch-attractiveness. The attractiveness in this case is made as
follows:

ask good-options [

let detected-rhino-signs (recent-rhino-activity / (rhino-activity-

decay * 2)) * search-rhino-weight

 let detected-poacher-signs ((human-signs-decay - poacher-signs) /

human-signs-decay) * catch-poacher-weight

 set patch-attractiveness (detected-rhino-signs + detected-poacher-signs)

/ new-patrol-weight

 if patch-attractiveness < 0 [

 set patch-attractiveness 0]

Again a best-option is determined as the patch in the good-options with the highest patch-
attractiveness. Allowing for some explorative behavior again this is compared to a random value

16

between 0 and 1. If the highest attractiveness is higher than this random value, the ranger selects as
his goal one of the good-options within a 1.5 radius, using rnd:weighted-one-of to weight the
attractiveness. The starting location is determined by calling ranger-start-location at this point. If
the random value is greater than the best-option a random location is set as the target and the start
location is again determined using the same procedure.

3.4. Patches
All behavior of the agents when running go has now been described. This behavior affects the
environment, creating a dynamic model (i.e. by rhinos eating the resources that direct their
movement, as a part of patch-attractiveness and the resources growing back after a while). Some of
the patch variables change under “natural” influences or the influence of other agents as well,
requiring commands for patches instead of agents. These procedures are update-resources and
update-activity-signs (in addition to the previously described update-home-range and update-
visualization). These procedures are also called by go.

Updating the resources manages the growth of resources, representing the natural occurrence thereof
and also replenishing what rhino agents have grazed. All patches with resources have a countdown set
as the sprout-delay-time plus a random value between 0 and 100. This counts down 1 for every passing
tick. Upon reaching 0 the resources of that patch increase by 1% (resources * 1.01), and the countdown
is reset. The regrowth is capped at 1, to keep the resource range within 0 to 1.
Finally updating the activity signs simply decreases the signs of rhino, poacher and ranger presence by
1 for each tick.

Literature

Lemieux, A. M. (2014). Situational Prevention of Poaching. London and New York: Routledge

I

Glossary

Border Outermost patches that are colored black and given no resources to represent a hard

border or fence for the animals.

Camp Sedentary agents shown as red houses in the park. Functions as a base for
rangers whom originate from the camps and return there on occasion. Camps can
either be placed randomly, manually or in fixed locations (build-camps procedure).
They exclude one another in a 10 patch radius, and make a radius of 4.5 patches
around them devoid of resources.

Carcass-decay Global countdown determining when a carcass disappears from a patch. A carcass
(poacher sign) is left on a patch as a poacher kills a rhino. The time is set to 10000 ticks,
matching the maximum duration of a simulation. As such a carcass will always remain
visible.

Failure-sites Patchset containing an individual poacher’s visited patches with > 0 ranger signs.
Accessible by that poacher and used in patch-attractiveness. Good- and failure sites
overwrite one another on revisits.

Fence See border.

Fence-patrol Ranger movement procedure that makes them patrol along the park borders.

Forage-amount Percentage with which resources on a rhino’s patch diminish, to represent grazing
((resources * ((100 - forage-amount) / 100))). Set by the slider in the interface.

Goal-dist Distance of individual agent to its goal patch. Used when the goal is not directly
adjacent to its current patch, and incorporated in patch-attractiveness weighted
probability of selection (rhino/poacher/ranger-movement). This also makes use of the
user-entered weight of the goal, to allow setting relative importance of the variables
in patch-attractiveness.

Good-options Patchset accessible by poachers, consisting of good- and success-sites of each
(poachers) individual poacher. Used to set patch-attractiveness to select a goal for a new trip.

Best-option is the patch within this set with the highest patch-attractiveness.

Good-options Patchset accessible by rangers, consisting of rhino-sightings and risky-areas of each
(rangers) individual ranger. Used to set patch-attractiveness to select a goal for the next patrol.

Best option is the patch within this set with the highest patch-attractiveness.

Good-sites Patchset containing an individual poacher’s visited patches with > 0 rhino and 0
ranger signs. Accessible by that poacher and used in patch-attractiveness. Good- and
failure sites overwrite one another on revisits.

Human-signs-decay Global countdown determining when poacher and ranger signs disappear from a
patch. Set to 200 ticks in setup-park.

Laylow Time for poachers to wait in between poaching trips. It is defined as (poacher-time *

2) + random 100 and starts counting down when the poacher has left the park. Upon
reaching 0 poacher-plan-new-trip is called to plan the following hunting trip.

Max-roughness The maximum roughness value of 5 is given to the number of patches specified by
the user using the rough-areas slider.

Nearby-rangers Patchset accessible by poachers, consisting of all rangers and ranger camps within
the individual poacher’s vision-radius. Used for avoidance purposes.

Off-duty-time Time for poachers to wait in between patrols. It is defined as (patrol-length * 2) +

random 100 and starts counting down when the ranger has come back from patrol.
Upon reacher 0 ranger-new-patrol is called to plan a new patrol.

Other-patrol-distance Distance between ranger agent and nearest other ranger agent. Weighted by the user-
entered ranger-avoid-weight and used in patch-attractiveness. Allows rangers to avoid
one another.

Patch-attractiveness Variable created for a set of patches surrounding each agent (see surroundings).
Consists of numerous variables for each agent type, to be found in the
rhino/poacher/ranger-decision-making and rhino/poacher/ranger-movement
procedures as well as poacher-plan-new-trip and ranger-new-patrol. Used to
create weighted probability of selection of that patch as the next movement goal.

II

Patrol-memory Memory of individual rangers, consisting of a patchset of recently visited patches;
accessible by the individual ranger. Used to avoid moving back and forth between two
patches.

Patrol-time Individual time count for each ranger, keeping track of how long he has been on
patrol. The maximum patrol time is set by the patrol-length slider, which when
reached results in the ranger going back to camp.

Poacher-goal Selected patch for the ranger to move to. The selection looks at the surroundings
(see surroundings in this glossary) and uses a weighted probability based on patch-
attractiveness to set the next goal. This is then moved to or towards by the poacher.

Poacher-memory Patchset consisting those patches visited by the individual poacher during a hunting
trip, used to avoid infinite revisits. The set is cleared upon a successful kill.

Poachers Agents that enter the park periodically to look for rhinos.

Poacher-signs As poachers move through a patch there is a 0.5 probability that a poacher sign is left
there as a patch-owned variable (set in setup-humans as the human-signs-decay of
200 ticks, allowing a varying countdown). This is used in various movement procedures
as part of patch-attractiveness. Sign decay is determined in update-activity-signs,
which counts down the signs by 1 for every passing tick.

Poacher-vision The radius of patches in which poachers can see rhinos and rangers (as well as their
camps), used to kill and avoid them respectively. Also used as the poacher’s
surroundings.

Poacher-weight Sum of user-entered weights for poacher movement procedure, set in setup-park:
(ranger-avoid-weight * 2) + hunt-rhino-weight + roughness-weight + resources-weight.
Used in poacher-decision-making and poacher-movement as part of patch-
attractiveness.

Ranger-dist Distance between poacher agent and nearest ranger agent. Weighted by the
user-entered ranger-avoid-weight and used in patch-attractiveness. Allows poachers
to avoid rangers.

Ranger-goal Selected patch for the ranger to move to. The selection looks at the surroundings
(see surroundings in this glossary) and uses a weighted probability based on patch-
attractiveness to set the next goal. This is then moved to or towards.

Rangers Agents that enter the park periodically to look for poachers.

Ranger-signs As rangers move through a patch there is a 0.5 probability that a ranger sign is left
there as a patch-owned variable (set in setup-humans as the human-signs-decay of
200 ticks, allowing a varying countdown). This is used in various movement procedures
as part of patch-attractiveness. Sign decay is determined in update-activity-signs,
which counts down the signs by 1 for every passing tick.

Ranger-vision The radius of patches in which rangers can see poachers, and from which a goal is
selected as these patches make up the surroundings.

Ranger-weight Sum of user-entered weights for ranger movement procedure, set in setup-
park: 1 + search-rhino-weight + roughness-weight + catch-poacher-weight. Used in
ranger-decision-making and ranger-movement as part of patch-attractiveness.

Recent-rhino-activity As rhinos move through a patch there is a 0.5 probability that a rhino sign is left there
as a patch-owned variable (set in release-rhinos as the rhino-activity-decay +
random 500, allowing a varying countdown). This is used in various movement
procedures as part of patch-attractiveness.

Resources Patch variable ranging from 0 to 1 (1.1!). Foraged for by rhinos agents that diminish
the amount of resources by a user determined percentage (rhino-foraging-and-
home-range). Re-growing 1% every time the sprout-delay-time has run out (rhino-
foraging-and-home-range). Resources are shown in shades of green where light is
low and dark is high.

Rhino-activity-decay Global countdown determining when rhino signs disappear from a patch. Base time is
set to 500 ticks in setup-park, randomized by adding between 0 and 500 ticks in
release-rhinos. Sign decay is determined in update-activity-signs, which counts
down the signs by 1 for every passing tick.

III

Rhino-dist Distance between rhino agent and nearest other rhino agent. Weighted by the user-
entered rhino-avoid-weight and used in patch-attractiveness. Allows rhinos to avoid
one another.

Rhino-goal Selected patch for the rhino to move to. The selection looks at the surroundings (see
surroundings in this glossary) and uses a weighted probability based on patch-
attractiveness to set the next goal. This is then moved to or towards.

Rhino-memory Memory of individual rhinos, consisting of a patchset of the last 3 visited patches
accessible by the individual rhino. Used to exclude these as potential next movement
goals, thereby avoiding long loops of back and forth moving between two patches.

Rhinos Agents that live in the park and looks for resources.

Rhino-sightings Patchset accessible by individual rangers consisting of those patches in which that
ranger has seen a rhino (looking at his own and neighboring patches).

Rhino-territory All patches within a 1.5 patch radius of the rhino agent are set as its territory, or
home range. This makes those patches less attractive to other rhinos, but does not
exclude them fully. As such home ranges can be overwritten.

Rhino-weight Sum of user-entered weights for rhino movement procedure, set in setup-
park: rhino-avoid-weight + roughness-weight + resources-weight. Used in rhino-
decision-making and rhino-movement as part of patch-attractiveness.

Risky-areas Patchset accessible by individual rangers containing an individual ranger’s visited
patches with > 0 poacher signs. Used in patch-attractiveness. Risky- and safe areas
overwrite one another on revisits.

Roughness Patch variable ranging from 1 to 5, representing terrain roughness and used to
determine movement speed (in each agent’s goal-check procedure). The user-
specified number of rough areas is given the maximum value, which is then faded out,
in create-rough-areas. Roughness is shown in shades of red where light is low and
dark is high.

Safe-areas Patchset accessible by individual rangers containing an individual ranger’s visited
patches with 0 poacher signs. Used in patch-attractiveness. Risky- and safe areas
overwrite one another on revisits.

Sandy-areas User determined percentage of patches that are made brown and barren, given no
resources: ((count patches with [inside? = TRUE]) / 100) * sandy-areas.

Sprout-delay-time Global countdown determining when resources can regrow. The base time is set to
100 ticks in setup-park, which is randomized by adding a random amount of ticks
between 0 and 100 in create-park and update-resources. This counts down 1 for
every passing tick. Upon reaching 0 the resources on the patch increase by 1%
(resources * 1.01).

Standard-patrol Standard patrol deployed by rangers when this type has been selected, and
described in the ranger-goal-check and ranger-movement.

State Ranger and poacher owned variable, describing their current action. When needed
the state is changed (i.e. from patrolling to off-duty-time), which then calls on the
corresponding procedures to run (i.e. if state is off-duty-time …).

Success-sites Patches where a poacher has been successful in killing a rhino, stored as a memory
patchset of that individual poacher and used in patch-attractiveness, accessible by that
poacher.

Surroundings Patchset that is defined for each agent in its respective decision-making and
movement procedures. It contains those patches from which the agent can select its
next movement goal, based on relative patch-attractiveness within the set.

Tick More or less abstract unit for time measurement, tracked in the tick-counter. It
counts the number of plot updates (i.e an agent moves every X amount of ticks and
patch variables are updated every Y amount of ticks). Simulations are set to run for a
maximum of 10000 ticks.

Ticks-wait Agent owned counter set to ticks-to-stay-on-patch. Makes agents wait for a number
of ticks of roughness – 1, thereby simulating terrain that is harder to move through. It
is in each agent’s goal-check procedure, and described for rhinos on page 8.

IV

Time (poacher) Individual time count for each poacher, keeping track of how long he has been
hunting. The maximum poaching time is set by the poacher-time slider, which when
reached results in the poacher leaving the park via the shortest route to the nearest
border.

