· Agent behavior: Agents will take the role of neurons as in the neural network model, with hidden layer neurons firing based on stimuli and a random chance of dropout on each input change. Input neurons will maintain a given input stimuli until the conclusion of backpropagation is detected. Output neurons will maintain a given output stimuli until a new input is received. Matrix multiplication will be used to reduce calculation between neuron layers. Agents will have a layer attribute so that they can be separated into an arbitrary number of agentsets (number of hidden layers should be customizable).

· System behavior: The system will model a dropout or ensemble (or some combination thereof) neural network, with measurements of change in the link weights used as the metric for network learning (the behavior being modeled will be the “shape” and speed of learning). Heavy modifications to the multilayer perceptron model are required to make arbitrarily large “deep” nets. Intend to use autoencoders of the MNIST dataset, possibly using bitmap to display input/output.

· Rationale for agent rules: In dropout learning it is more common to pick some given number of nodes at random to drop with each sample, but putting this random behavior at an agent level takes better advantage of netlogo and the ABM mindset. Otherwise, behavior should be equivalent to that of a typical neural net, but the agent-based model of this behavior should yield better insight into local effects of dropout in the network. Agents need to be organized by layer for some steps of the processes, though hidden nodes should have the same agent rules regardless of layer number.

· Model output: The model is not yet functional at a level that allows testing for a metric of “evenness” in the network, though I have decided to use a live measure heuristic for the accuracy of a network over time, where at time step I the learning score l_i will be determined by .9*l_{i-1} + .1*{measure of accuracy on this input}. I intend to focus on autoencoder architectures (i.e. where the output is meant to equal input for a type of compression learning) in order to provide easy heuristics on accuracy for each input. The MNIST dataset will provide an enlightening (if large) and potentially visually appealing dataset for compression (output will visually differ from input if there is error).

· Questions: Can the algebraic intuitions on the problem from my extracurricular project come into play in this model? What extensions may be necessary to create a bitmap from the output node values, and do they exist yet? To what extent should the user have control over the number of layers and number of nodes in each layer? What changes should be made to make visuals cleaner on large scale (maybe change size variance in links to color shifts?).

· Next steps: Finalize code, especially visual representations of network. Begin running simulations and focusing on data-capturing strategy.


[bookmark: _GoBack]
· Model Analysis: Model nearly expressive of deep networks, dropout and ensemble should follow soon after. From there, model analysis should yield insights into the local effects of dropout and ensemble learning, and metrics of learning “evenness” should hopefully point to a similarity in the reasons for these advantages.

