· Agent behavior: Agents will take the role of neurons as in the neural network model, with hidden layer neurons firing based on stimuli and a random chance of dropout on each input change. Input neurons will maintain a given input stimuli until the conclusion of backpropagation is detected. Output neurons will maintain a given output stimuli until a new input is received.

· System behavior: The system will model a dropout or ensemble (or some combination thereof) neural network, with measurements of change in the link weights used as the metric for network learning (the behavior being modeled will be the “shape” and speed of learning)

· Rationale for agent rules: In dropout learning it is more common to pick some given number of nodes at random to drop with each sample, but putting this random behavior at an agent level takes better advantage of netlogo and the ABM mindset. Otherwise, behavior should be equivalent to that of a typical neural net, but the agent-based model of this behavior should yield better insight into local effects of dropout in the network.

· Model output: The model is not yet functional at a level that allows testing for a metric of “evenness” in the network, though I have decided to use a live measure heuristic for the accuracy of a network over time, where at time step I the learning score l_i will be determined by .9*l_{i-1} + .1*{measure of accuracy on this input}. I intend to focus on autoencoder architectures (i.e. where the output is meant to equal input for a type of compression learning) in order to provide easy heuristics on accuracy for each input.

· Questions: What scale is likely to be approachable? Is there a more efficient way to calculate results in larger nets? Can a lambda-function-eque variable be used in order to change the function used by nodes to calculate the firing threshold on-the-fly? Can the algebraic intuitions on the problem from my extracurricular project come into play in this model?

· Next steps: Fully functional build. Initial testing and establishment of a data set. Tweaking of the learning score heuristic. Implementation of better dropout techniques (if needed). Interface and generation decisions for ensemble networks. Side-by-side comparison with same data? (i.e. simultaneous implementation of different architectures?). Design of a strong learning visualization.

· [bookmark: _GoBack]Model Analysis: No output so far, and hence no conclusions. From this model, I hope to initially establish the advantages of dropout and ensemble learning (well-known results) for legitimacy’s sake. From there, model analysis should yield insights into the local effects of dropout and ensemble learning, and metrics of learning “evenness” should hopefully point to a similarity in the reasons for these advantages.
