Bulls and Bears
Model was written in NetLogo 6.2.0
•
Viewed 423 times
•
Downloaded 29 times
•
Run 0 times
Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)
Info tab cannot be displayed because of an encoding error
Comments and Questions
Please start the discussion about this model!
(You'll first need to log in.)
Click to Run Model
;; Bulls & Bears ;; A Minimalist Artificial Stock Market globals [ ;; From sliders: ;; investors ;; total number of investors/agents ;; fraction-contrarians ;; percentage of investors that are contrarians ;; memory ;; number of periods m that price is remembered ;; wealth-factor ;; coefficient k1 ;; maximum-herd-effect-followers ;; coefficient k2 ;; maximum-herd-effect-contrarians ;; coefficient k3 ;; maximum-risk-appetite ;; coefficient k4 ;; price-sensitivity-to-demand ;; coefficient k5 ;; Others: num-contrarians ;; total number of contrarians num-followers ;; total number of followers risk-appetite-big ;; used for ma >=0 risk-appetite-small ;; used for ma < 0 tot-demand-followers ;; total demand of followers tot-demand-contrarians ;; total demand of contrarians tot-demand ;; total value of shares demanded ;; tot-share-demand ;; total number of shares demanded price ;; current calculated price last-price ;; price at time t-1 return ;; percentage price change from t-1 to t value-traded ;; equal to smaller of demands, to clear market volume-traded ;; value traded divided by share price followers-wealth ;; total wealth of followers contrarians-wealth ;; total wealth of contrarians total-wealth ;; total wealth of all investors max-wealth ;; highest wealth of all investors min-wealth ;; lowest wealth of all investors max-demand-c ;; maximum demand of contrarians max-demand-f ;; maximum demand of followers max-demand ;; highest demand of all investors min-demand ;; lowest demand of all investors all-return-list ;; collects all returns return-list ;; collects last m returns moving-average ;; average return over last m periods all-volatility-list ;; collects all volatilities volatility-price-list ;; collects last 36 prices volatility ;; standard deviation of returns over last 36 periods value-traded-list ;; collects values traded volume-traded-list ;; collects volumes traded graph-max ;; maximum of previous two lists graph-min ;; minimum of previous two lists ] turtles-own [ follower contrarian cash shares-value shares wealth wealth-effect ;; part of investors' demand function herd-effect-follower ;; part of followers' demand function herd-effect-contrarian ;; part of contrarians' demand function risk-appetite ;; part of investors' demand function demand-follower demand-contrarian shares-value-transacted ] to setup ca random-seed 1051100757 ;; if required ask patches [ set pcolor white ] ;; create a blank background create-turtles investors [ setxy random-xcor random-ycor set size 3 ] ;; Create empty lists for return histogram, moving average of last m returns, 36-period price volatility, trade set all-return-list [ 0 ] ;; for histogram scaling set return-list [] ;; for moving average while [ length return-list < memory ] [ set return-list lput 0 return-list ] set all-volatility-list [ 0 0.2] ;; for volatility graph scaling set volatility-price-list [] while [ length volatility-price-list < 36 ] [ set volatility-price-list lput 100 volatility-price-list ] set value-traded-list [] ;; for trade graph scaling set volume-traded-list [] ;; for trade graph scaling set num-contrarians round ( ( fraction-contrarians ) / ( 100 ) * ( investors ) ) set num-followers ( investors - num-contrarians ) ;; Initialise some variables set price ( 100 ) set moving-average ( 0 ) set graph-min ( 0 ) set graph-max ( 1 ) ;; Divide into two investor types ask turtles [ set cash 50 set shares-value 50 set wealth cash + shares-value ifelse who < num-contrarians [ set contrarian 1 set follower 0 set shape "wolf 3" set color red ] [ set contrarian 0 set follower 1 set shape "cow skull" set color blue ] ] reset-ticks end to go ;; For each investor calculate *magnitudes* of demands, i.e. "desired size of bet" set risk-appetite-big maximum-risk-appetite / 1 * moving-average set risk-appetite-small maximum-risk-appetite / 2.5 * moving-average ;; investors hate losses ~2.5 times as much as they love gains ask turtles [ ;; Wealth: range of wealth parameter (i.e. on slider) and other parameters need to be determined empirically set wealth-effect ( ( wealth-factor ) * ( wealth ) ) ;; this is per investor ifelse contrarian = 1 [ ;; Herding: the susceptibility of investors to herding by their own type ranges randomly from zero to the maximum set herd-effect-contrarian random-float abs ( ( maximum-herd-effect-contrarians ) * ( tot-demand-contrarians ) / ( num-contrarians ) ) ;; normalize per investor ;; Risk appetite: ifelse moving-average >= 0 [ set risk-appetite random-float risk-appetite-small ] [ set risk-appetite random-float ( - ( risk-appetite-big ) ) ] ;; this is per investor set demand-contrarian max list 0 ( wealth-effect + herd-effect-contrarian + risk-appetite ) ;; Full demand function: is "desired size of bet" so cannot be less than zero; the sign is then determined purely by type of investor set demand-contrarian min list demand-contrarian wealth ;; Can't bet more than one's wealth ;; Scaling for main graph if ticks > 2 [set color scale-color blue risk-appetite ( max [ risk-appetite ] of turtles + 1 ) ( min [ risk-appetite ] of turtles) ] ;; + 1 is error trap for when m.a. = 0 set size min list ( 0.5 * herd-effect-contrarian + 1.3 ) 7 ] [ set herd-effect-follower random-float abs ( ( maximum-herd-effect-followers ) * ( tot-demand-followers ) / ( num-followers) ) ifelse moving-average >= 0 [ set risk-appetite random-float ( - ( risk-appetite-big ) ) ] [ set risk-appetite random-float risk-appetite-small ] set demand-follower max list 0 ( wealth-effect + herd-effect-follower + risk-appetite ) set demand-follower min list demand-follower wealth if ticks > 2 [ set color scale-color red risk-appetite ( max [ risk-appetite ] of turtles + 1 ) ( min [ risk-appetite ] of turtles ) ] set size min list ( 0.5 * herd-effect-follower + 1.3 ) 7 ] ] ;; In the risk appetite calculation above it is assumed that if e.g. moving-average >= 0 followers would have largely been long, so their ;; risk appetite will be big, with the converse for contrarians. Ideally, each investor should have their own personal moving-average. ;; For each investor type, aggregate demand set tot-demand-followers sum [ demand-follower ] of turtles if tot-demand-followers = 0 [ set tot-demand-followers (10) ] ;; error trap for division by zero set tot-demand-contrarians sum [ demand-contrarian ] of turtles if tot-demand-contrarians = 0 [ set tot-demand-contrarians (10) ] ;; error trap for division by zero ;; For each investor type now calculate *sign* of aggregate demand, i.e. direction of aggregate bet ifelse return > 0 [ set tot-demand-contrarians (- tot-demand-contrarians) ] [ set tot-demand-followers (- tot-demand-followers) ] set tot-demand ( tot-demand-followers ) + ( tot-demand-contrarians ) ;; i.e. is *net* demand ;; Calculate new price set last-price price set price ( ( last-price ) + ( price-sensitivity-to-demand ) * ( tot-demand ) ) if price <= 0 [set price (1)] ;; error trap - price floor ;; Calculate return over period set return ( ( price ) / ( last-price ) - ( 1 ) ) * ( 100 ) ;; Add return to the all-return list, then the moving-average return list and take average of this list set all-return-list lput return all-return-list set return-list lput return return-list set return-list remove-item 0 return-list set moving-average ( mean return-list ) ;; Add price to the volatility price list, take standard deviation of list, cumulate volatilities set volatility-price-list lput price volatility-price-list set volatility-price-list remove-item 0 volatility-price-list set volatility ( standard-deviation volatility-price-list ) if ticks > 36 [ set all-volatility-list lput volatility all-volatility-list ] ;; start to cumulate volatilities when past initialized dummy data ;; Calculate value traded (equal to smaller of demands, to clear market) and volume set value-traded min list abs tot-demand-followers abs tot-demand-contrarians set volume-traded ( value-traded ) / ( price ) * ( 100 ) ;; For trade graph scaling set value-traded-list lput value-traded value-traded-list set volume-traded-list lput volume-traded volume-traded-list set graph-max max list ( max value-traded-list ) ( max volume-traded-list ) set graph-min min list ( min value-traded-list ) ( min volume-traded-list ) ;; Recalculate investors' wealth ask turtles [ ifelse contrarian = 1 [ set shares-value-transacted ( demand-contrarian ) / ( tot-demand-contrarians ) * ( value-traded ) ;; get share value allocated pro-rata to relative demand ;; change investors' cash and share balances ifelse return >= 0 [ set shares-value shares-value - shares-value-transacted set shares ( shares-value ) / ( last-price ) set cash cash + shares-value-transacted ] [ set shares-value shares-value + shares-value-transacted set shares ( shares-value ) / ( last-price ) set cash cash - shares-value-transacted ] ] [ set shares-value-transacted ( demand-follower ) / ( tot-demand-followers ) * ( value-traded ) ifelse return >= 0 [ set shares-value shares-value + shares-value-transacted set shares ( shares-value ) / ( last-price ) set cash cash - shares-value-transacted ] [ set shares-value shares-value - shares-value-transacted set shares ( shares-value ) / ( last-price ) set cash cash + shares-value-transacted ] ] set wealth ( shares ) * ( price ) + ( cash ) ;; update investors' wealth ] ;; Scaling of main graph set followers-wealth sum [ wealth ] of turtles with [ follower = 1 ] set contrarians-wealth sum [ wealth ] of turtles with [ contrarian = 1 ] set total-wealth sum [ wealth ] of turtles set max-wealth max [ wealth] of turtles set min-wealth min [ wealth] of turtles if max-wealth = min-wealth [ set max-wealth ( max-wealth + random ( 10 ) ) set min-wealth ( min-wealth - random ( 10 ) ) ] ;; error trap to stop division by zero in plot set max-demand-c max [ demand-contrarian ] of turtles set max-demand-f max [ demand-follower ] of turtles set max-demand max list max-demand-c max-demand-f ;; must be a cleverer way to do this set min-demand min list min [ demand-contrarian ] of turtles min [ demand-follower ] of turtles ask turtles ;; [ if wealth >= 0 [ ifelse contrarian = 1 [ setxy ((( wealth - min-wealth ) / ( max-wealth - min-wealth ) * ( max-pxcor - min-pxcor)) + min-pxcor ) ((( demand-contrarian - min-demand ) / ( max-demand - min-demand ) * ( max-pycor - min-pycor)) + min-pycor ) ] [ setxy ((( wealth - min-wealth ) * ( max-pxcor - min-pxcor) / ( max-wealth - min-wealth )) + min-pxcor ) ((( demand-follower - min-demand ) / ( max-demand - min-demand ) * ( max-pycor - min-pycor)) + min-pycor ) ] ;; ] ] tick end
There are 2 versions of this model.
Attached files
File | Type | Description | Last updated | |
---|---|---|---|---|
Bulls and Bears.png | preview | Preview for 'Bulls and Bears' | over 3 years ago, by Franco Busetti | Download |
This model does not have any ancestors.
This model does not have any descendants.