Stuart-Landau Oscillator

Stuart-Landau Oscillator preview image

1 collaborator

Default-person julien siebert (Author)

Tags

oscillation 

Tagged by julien siebert almost 6 years ago

physics 

Tagged by julien siebert almost 6 years ago

Visible to everyone | Changeable by everyone
Model was written in NetLogo 5.0.4 • Viewed 1374 times • Downloaded 30 times • Run 0 times
Download the 'Stuart-Landau Oscillator' modelDownload this modelEmbed this model

Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)


WHAT IS IT?

The Stuart-Landau oscillator model

HOW IT WORKS

Each node (turtle) represents one oscillator: a single variable 'z' which is complex (i.e. z = a + i*b).

The nodes coordinates represent both real part and imaginary part of 'z' (i.e. xcor is the real part and ycor is the imaginary part).

Each node follows the following equation of motion:

dz/dt = (lambda + iomega - |z|^2)z

Where lambda and omega are control parameters. |z| represent the modulus of the complex number z.

HOW TO USE IT

Choose the number of nodes (note that in this model the nodes do not interact with each other, so you can simply put one node) with the 'nb-node slider'. Putting more than one node helps to explore the behaviour of the whole system (e.g. to see if there is an attractor).

Choose the values of lambda and omega.

Set dt (I usually use 0.001). This is the increment of time in the model. For more details about 'dt' see Euler algorithm for numerical simulation of derivative equations.

Choose if you want to see the trajectories of the nodes.

Push 'setup' and 'go' :)

THINGS TO NOTICE

Drawing the trajectories helps to see the the stable region (here a cycle).

THINGS TO TRY

Move lambda and omega to see their influence on the behaviour of the nodes.

EXTENDING THE MODEL

You could add links between nodes and make them interact...

NETLOGO FEATURES

RELATED MODELS

CREDITS AND REFERENCES

I used the code for complex operations directly from the "Mandelbrot model". Thanks, it was really helpful.

See http://www.scholarpedia.org/article/Periodic_orbit if you want to know more about oscillators in general.

Find mode about the "Stuart-Landau" oscillator in Handbook of Chaos Control, edited by E. Schoell and H. G. Schuster (Wiley-VCH, Weinheim, 2008), second completely revised and enlarged edition.

Comments and Questions

Please start the discussion about this model! (You'll first need to log in.)

Click to Run Model

breed [nodes node]

links-own [ weight ]

to setup
  clear-all
  ;; creates all the nodes
  set-default-shape nodes "circle"
  create-nodes nb-nodes [ setxy random-xcor random-ycor set size 0.25 ]
  ;; set simulation time to 0
  reset-ticks
end 

to go
  ifelse draw-trajectories [  ;; draw the trajectories?
    ask nodes [pen-down]
  ][
    ask nodes [pen-up]
  ]
  
  move-nodes
  tick
end 

to move-nodes
  ask nodes
  [
    let z-real xcor
    let z-imag ycor
    
    ;; f(z) = (lambda + i*omega - |z|^2)*z
    let mod-z-sq (modulus z-real z-imag) * (modulus z-real z-imag) ;; modulus(z) square
    let fz-real (rmult (lambda - mod-z-sq) omega z-real z-imag)
    let fz-imag (imult (lambda - mod-z-sq) omega z-real z-imag)
    
    ;; euler algorithm
    setxy (xcor + (fz-real) * dt) (ycor + (fz-imag) * dt)
  ]
end 

;;; Real and Imaginary Arithmetic Operators

;;; real part of the multiplication (a+ib)*(c+id) = (ac-bd) + i(ad+cb)
;;; returns the real part (ac-bd)

to-report rmult [real1 imaginary1 real2 imaginary2]
  report real1 * real2 - imaginary1 * imaginary2
end 

;;; imaginary part of the multiplication (a+ib)*(c+id) = (ac-bd) + i(ad+cb)
;;; returns the imaginary part (ad+cb)

to-report imult [real1 imaginary1 real2 imaginary2]
  report real1 * imaginary2 + real2 * imaginary1
end 

;;; returns the modulus of a complex number a+ib

to-report modulus [real imaginary]
  report sqrt (real ^ 2 + imaginary ^ 2)
end 

There are 3 versions of this model.

Uploaded by When Description Download
julien siebert almost 6 years ago Change the size of the turtles and correct info part Download this version
julien siebert almost 6 years ago minor changes Download this version
julien siebert almost 6 years ago Initial upload Download this version

Attached files

File Type Description Last updated
Stuart-Landau Oscillator.png preview Preview for 'Stuart-Landau Oscillator' almost 6 years ago, by julien siebert Download

This model does not have any ancestors.

This model does not have any descendants.