
Natalie Murray

EECS 472

10 June 2013

Collaborative Diffusion: Game AI for Kids

This project involves the implementation of a lesson plan to teach middle school students

about collaborative diffusion- it is a great way to teach them about agent based modeling and

simulation, artificial intelligence and game design, path planning, emergent behavior, and

computer science in general. Collaborative diffusion, first introduced by Alexander Repenning

of UC-Boulder in the paper Collaborative Diffusion: Programming Antiobjects, is a simple

agent-based path planning technique that is particularly effective for mazes and situations with

multiple possible paths and close corridors. Collaborative diffusion works similar to regular

diffusion, but with an important distinction. In regular diffusion, agents follow a ‘scent’ gradient

toward the goal. In a multi-agent setting this would lead to all agents taking the same path.

 Collaborative diffusion introduces a simple but powerful mechanism that results in emergent

behavior where agents take different paths to reach a goal (thus they ‘collaborate’). This

distinction, which is essentially the dampening of the diffusion scent at the location of agents

searching for a goal, will be discussed more in the collaborative diffusion section of this report.

Three models were built. The first is a demonstration of collaborative diffusion that

illustrates multiple agents searching through mazes and other obstacles to reach a goal. It also

has the capability for users to draw their own mazes and see how agents work together to find the

target. The second model extends the Pac-Man game in the models library so that the ghosts find

the Pac-Man via collaborative diffusion. The third model is a participatory Hub-Net simulation

where players act as the Pac-Man and ghosts to learn more about collaborative diffusion. See the

models section for more information.

What Can Be Learned

The driving question behind these models is not a traditional research question, but

rather, how can we get middle school and high school students excited about computer science

and engineering? Educational and outreach activities like this are so important since there is

such a need for more students to enter into STEM (science, technology, engineering,

mathematics) fields.

Collaborative diffusion is a great way to get young students exposed to and excited about

computer science. More specifically, it exposes them to many facets of the field- game design,

artificial intelligence, modeling and simulation, and path planning. Since collaborative diffusion

is so simple, both the visualization and code are tools for that middle and high school students

can understand.

Collaborative Diffusion

Collaborative diffusion is a simple path finding algorithm well suited to mazes and close

corridors where multiple agents have to work together to find a goal. It is a simple extension on

diffusion that produces surprisingly powerful results.

Diffusion itself is rather simple. The goal emits a scent that gets diffused through the

game board. Each patch gives away its scent to its four surrounding Von Neumann neighbors

(up, down, left, right). As time goes on, the scent is diffused through the entire board. For an

agent to find the goal, it must simply follow the scent as it gets stronger to the goal.

Figure	
 1:	
 Simple	
 Diffusion	

When multiple agents are involved however, simple diffusion is not sufficient. In a

situation such as a maze, it is ideal for the agents to take different paths, more of a divide and

conquer approach. With simple diffusion, however, they would just all follow the same path,

which is not as efficient. The element of collaboration is introduced by the dampening of the

scent where agents are. The scent (or diffusion value) is always set to zero at the patch where

each agent is located. In close corridors, this essentially blocks the scent from passing through

the agent. When the diffusion value/scent is set to zero, this dampens the scent in the area

surrounding an agent. The result is that when agents are presented with several possible paths,

they will choose different ones. This is because they are essentially following the gradient of the

scent. If the gradient is dampened by the presence of another agent, the algorithm forces agents

to take a different path.

!

Figure	
 2:	
 Collaborative	
 diffusion	
 in	
 a	
 maze

The two simple rules: agents follow the scent gradient, and agents dampen/block the

scent around them results in emergent behavior where the agents take different paths when

confronted with multiple possibilities.

Implementation and Models

1. Collaborative Diffusion Demo

The collaborative diffusion demo is used to demonstrate collaborative diffusion in a

simple manner before moving on to working with collaborative diffusion in Pac-Man. There are

four possible configurations for the model. The first two are ‘Three Aisle’ configurations, where

the goal is positioned at the end of three corridors that the ghosts travel through. The third

configuration is a maze, and the fourth configuration is a draw-your-own-maze functionality.

 For the first three configurations, when collaborative diffusion is enabled the ghost agents will

all take different paths to find the goal star.

!

Figure	
 3:	
 Three	
 Aisle	
 Configuration

There are two types of agents: goal agents and ghost agents. Goal agents are blue stars

and ghost agents are purple triangles. The goal agent is static, and the ghost agents search for the

goal.

The patches-own variable dif-val stores the diffusion-value that the ghosts follow. The

global variable stop? is used to stop the simulation when the ghosts find the goal. There is a

switch that controls whether collaboration is used- with collaboration ghosts will take separate

paths, without collaboration they will take the same path.

The basic code is rather simple, as there are two functions that drive the simulation:

move-turtles and set-diffusion values. Move-turtles asks ghosts to move in the direction of the

highest diffusion value, and set-diffusion-values uses the diffuse function to diffuse the scent to

neighboring patches. The walls (green patches) have diffusion-values of 0, as do patches with

ghosts on them. This means that the scent does not diffuse through walls and ghosts, but rather

around them.

To use any of the first three configurations, simply choose the configuration, click setup,

then click go. The brightness of the orange represents how strong the scent is at a given patch.

 Notice that once a ghost is in a corridor, the scent is blocked and the patches behind the turtle

are much darker.

The final configuration, ‘draw mode’ is a method for students to draw their own maze

and watch the ghosts try to find the goal. The buttons on the right side of the view window are

for draw mode (note that they do nothing when the model is set to other configurations). The

buttons/functions are all self-explanatory: clear clears the screen, and draw-maze is used to draw

the maze (and erase erases green patches). Add-ghosts and add-goal add those agents,

respectively, and delete-agent deletes the agent on the patch the user clicks on. To use the maze,

click load-maze to setup the maze; then click go to start the simulation. Note that for draw mode

the view needs to be updated continuously so you can see the maze being drawn in real-time.

!

Figure	
 4:	
 'Draw	
 your	
 own	
 maze'	
 configuration

2. Pac-Man with Collaborative Diffusion

This model is an extension of the Pac-Man game in the models library. The extensions to

the game will be discussed- the main addition is that when in pursuit of the Pac-Man the ghosts

move via collaborative diffusion.

!

Figure	
 5:	
 Pac-­‐Man	
 with	
 collaborative	
 diffusion

The functions that control the diffusion and visualization are the same as in the

collaborative diffusion demo. The function that moves the ghosts is adapted from the move-

ghosts procedure in the Pac-Man game. There are three different settings for the ghosts: in

pursuit, scared, and eaten. If the ghost is in pursuit of the Pac-Man, then the ghosts search for

the Pac-Man via collaborative diffusion, as in the demo model. If the ghost is either scared or

eaten it moves using the functions from the Pac-Man game in the models library.

There are three additional switches/sliders for the Pac-Man game. You can turn

collaborative diffusion and the visualization on and off through their respective switches, and

you can control the diffusion speed through the diffusion-speed slider. The number for the slider

represents how many times the diffusion values are updated every time the ghosts move (so

essentially how many times diffuse4 is called each time the ghosts move). Once setup, the game

works the same way as the version in the Models Library.

3. Pac-Man HubNet Activity

The Pac-Man HubNet activity is participatory version of the Pac-Man activity. The

person who controls the simulation controls the Pac-Man. The clients are the ghosts. The

purpose of the simulation is to reinforce the concept of collaborative diffusion by only letting the

students see the patches directly surrounding the ghost they control.

!

Figure	
 6:	
 Path	
 Mode

The path-mode switch represents the mode of the simulation. When in path mode, the

pellets disappear and the paths of the ghosts are traced using the pen functionality. The intention

of this functionality is that once the Pac-Man is caught, the students will see the full screen (for

example on a projector) and see how they all took different paths even though they only saw the

eight surrounding patches.

!

Figure	
 7:	
 Normal	
 Mode

The other mode is just traditional Pac-Man. The students will follow the scent

visualization to catch the Pac-Man, and the person running the simulation will control the Pac-

Man. Otherwise the functionality is very similar to the single player Pac-Man functionality.

!

Figure	
 8:	
 Client	
 View

The simulation can handle up to four clients, if others try to join a ghost will not be

created for them. The controls for the ghosts that appear in the simulation are in the form of the

student code. The code for the ghosts from the single player Pac-Man model is kept in the model

for a possible extension in the future- if there are not enough students for the simulation but you

still want to have four ghosts the code can be extended to include ‘android ghosts.’

Rationale and Design Choices

Agent based modeling is a great candidate for teaching students about collaborative

diffusion. NetLogo works well as a platform because it’s interface is easy to use and it is easy to

interact with models. For middle and high school engineering outreach, it is really important to

teach concepts in a way that is simple, interactive, and relatable. Collaborative diffusion itself is

based on just a few basic rules, and the visualization shows the emergent value in a clear way.

 The models and simulations described above allow for room for users to play around with

different settings and parameters, draw their own obstacle courses for agents to make their way

through, and shows how it can be used to guide agents to a goal through a complex space.

An agent based setting is particularly useful compared to other platforms/languages

because the NetLogo language is especially suited for expressing simple rules for the agents to

move by. Furthermore, visualization in this setting is simple with built-in functions such as the

scale-color function. The simplicity of the language and ease of both programming and using the

interface make agent-based modeling, and more specifically NetLogo, an especially powerful

way of presenting collaborative diffusion for a younger audience not familiar with programming.

Collaborative Diffusion Demo:

The most important aspect of this model is the visualization. Especially for younger

users, if they cannot see how the scent is spread, collaborative diffusion will be a much more

challenging concept to grasp. For this reason, the scent is visualized as a color gradient. See the

code in set-diffusion-values for more information.

The two main configurations- Three-Aisles and Maze were chosen because they are

effective examples to portray the ghosts following the scent and choosing different paths. Three-

Aisles clearly marks one best way for the ghosts to split up and find the star- by each one taking

a separate path. When the simulation stops, the dampening of the scent by the ghosts in the

aisles is clear. I chose a maze configuration because it also shows the agents always taking

different paths. The differences in the color gradient are more pronounced in the maze, so the

dampening effect is emphasized and it is clear which way the ghosts should go.

The maze drawing functionality was added as an interactive way for the students to play

around with the model and see which types of setting are best for employing collaborative

diffusion.

Pac-Man

Pac-Man was chosen to demonstrate collaborative diffusion because when simplified,

Pac-Man is essentially a game where agents search through a maze for a goal. It is also a game

that most people (even younger students) are familiar with, so it is a particularly relatable

application of the technique.

Most of the extension was fairly straightforward- I used the same set-diffusion-values and

initialize-diffusion-values functions from the collaborative diffusion demo. The move-ghosts

procedure was transformed into the move-ghosts-cd procedure, where the ghosts in pursuit of the

Pac-Man move via collaborative diffusion. The methods for moving the ghost when they are

either scared or eaten remain the same as in the Models Library version of the game. When

scared, they do not just follow the lower patches with the lower scent value since the ghosts often

fall into a local minima and go back and forth between the same spots until they are no longer

scared.

There is a bug in the game that was introduced with the collaborative diffusion code.

 When playing the game, you will notice that sometimes a run-in between the Pac-Man and the

ghost does not result in anything (either the Pac-Man dying or the ghost being eaten). I was not

able to determine definitively the source of the bug since the code that controls the Pac-Man

dying or eating a ghost is found in the consume procedure, which does not interact with the

collaborative diffusion code. My best guess is that it has something to do with the use of ‘every’

to control when the ghosts and Pac-Man move, and issues arising from the coordination of the

Pac-Man and the ghosts. I found that the original settings of moving the Pac-Man every 1

second (adjusted for difficulty) and moving the ghosts every 1.6 seconds (adjusted for difficulty)

had the best results in terms of visualization and Pac-Man/ghost interactions. However, the idea

of the ghosts looking for the Pac-Man via collaborative diffusion is still clear (see the validation

section for more information)- the ghosts follow the scent and take different paths. To

accommodate for this, I kept the option to play the game in the original mode from the Models

Library in case users at any point just want to play Pac-Man.

Another issue (and thus design choice) for the Pac-Man model is how often the to update

the diffusion scent and visualization. To stay the most true to collaborative diffusion, the

diffusion values would update according to the movement of the Pac-Man. However, this

created problems with the syncing of the visualization with the ghosts- if the diffusion values and

visualization are not updated with the ghosts, the black under the patches of the ghosts will be

out of sync with the movement of the ghosts. Updating the visualization more often than when

both the Pac-Man and ghosts move results in choppy updates since the ghosts and Pac-Man

move at different rates. The key to this game/demo is the visualization of the scent and seeing

the ghosts follow that scent. For this reason, I chose to have the diffusion-values and

visualization update with the movement of the ghosts. This way, the movement of the ghosts is

consistent with the visualization updates- this is very noticeable if it is not since you would have

black squares moving either behind or ahead of the ghosts if they are not in sync. The

visualization update is not quite in sync with the Pac-Man, but since the colors are much brighter

around the Pac-Man the difference is not as noticeable and does not take away from the

comprehensibility of the model. Different options for the visualization and scent updates were

presented to the testers, and I chose the option that got the best feedback.

HubNet

HubNet is particularly useful for reinforcing the concept of collaborative diffusion. This

is because the design of the simulation forces the students into the perspective of the ghosts,

where all the only information they know deals with the surrounding patches and their diffusion-

values. As discussed in the validation section, test users found it as the best way to understand

how collaborative diffusion works.

The pellets, bonuses, and Pac-Man are hidden to reinforce that the ghosts find their way

only by following the scent.

Validation

There were two main ways I validated my project: the first was through validating that

the collaborative diffusion code worked. Second, I tested the models out with four students and

got feedback on how effective the models are at teaching collaborative diffusion.

The collaborative diffusion code was validated in the demo in two main ways- first by

stepping through the simulation and making sure that the ghosts always picked the patch with the

highest diffusion value. At every point tick in the simulation, the ghost patches and the green

patches have diffusion-values of 0, as expected. Second, I used the visualization as further

validation. You can see from looking at the simulation when it runs slowly that the ghosts

choose the brightest patch. The scent blocking capabilities of the ghost are clear when the ghosts

enter the corridors. Predictably, the colors of the patches directly behind the ghost are much

darker after the ghost enters the corridors and the scent can no longer get through.

To validate the Pac-Man game, I, along with the other students tested it out. We found

no problems with the ghosts following the diffusion scent to follow the Pac-Man. When testing

the visualization, they confirmed that the lag with the Pac-Man moving and scent updating with

the movement was not noticeable and did not detract from their experience. The also noted that

even though the Pac-Man/ghost interactions did not always work, they were able to see how

collaborative diffusion can be used to control the movement of the ghosts.

To validate the HubNet activity, I tested it out with several other students as the clients.

 We found no bugs and issues, and the feedback for the HubNet activity was great.

When students (all Northwestern undergraduate students) tested out the models, the

reaction was overall positive. One student commented that “The models are great at

demonstrating collaborative diffusion... I think the models are very appropriate and that middle-

school students will find the gamey feel engaging.” and another said, “I think the models are

very appropriate and that middle-school students will find the gamey feel engaging... This is the

best demonstration I have ever seen. Could not think of a better way to introduce and teach the

topic.”

In their feedback, the Pac-Man game and HubNet activity seemed to show the clearest

explanation of collaborative diffusion, since the game is familiar and application clear. One

student commented, “I really liked the real-time nature of the games. It is easy to control and the

adaptation to Pac-man brings an engaging challenge to the project.” The HubNet activity

especially drove home the concept of collaborative diffusion. When the HubNet was run so that

paths were traced, all students were surprised when they saw the paths traced out on the main

screen. The all worked together with limited information, and as one student added, “Seeing the

different paths all the ghosts take after the fact is a great moment and delivers the impact of the

program's purpose.”

Furthermore, none of the students commented on the visualization lag for the Pac-Man;

in fact, they did not even notice it until I pointed it out. The only issue with the Pac-Man game

was that the ghosts do not always interact with the Pac-Man properly, as discussed above.

 However, none of them felt that this took significantly away from driving the point about

collaborative diffusion home.

In terms of improvement, the biggest areas for improvement were in terms of instruction

and explanation, especially for the Collaborative Diffusion Demo model. Once student

commented that “I was still a bit confused during the purple/blue triangle part because I think the

‘pick the brighter square’ makes more sense when you're only looking at a few squares at once.”

 Another student commented that the buttons were sometime confusing, so I added detailed

explanations of what each button does in the student guide. In response I made the teacher and

student guides overall more detailed, as well as improved the demo model so that the drawing

buttons only work when the configuration is set to ‘Draw’.

Next Steps

There are a few things that could be done to either extend or improve the model. The

first thing to focus on would be fixing the Pac-Man/ghost interactions. A possible extension

would be to include more configurations for the collaborative diffusion demo. For the HubNet

activity, in the future the ‘android ghosts’ discussed previously could be added into the HubNet

activity so that you could still have four ghosts with fewer than four students. Lastly, levels are

not currently a part of the HubNet model and can be incorporated back in.

Conclusion

Collaborative diffusion is a method that shows how powerful agent-based techniques

using simple rules can result in complex and surprising behavior. These qualities make it a great

tool to teach middle and high school students about modeling, computer science, and game AI.

Bibliography

 “Collaborative Diffusion.” Scalable Game Design.

 <http://scalablegamedesign.cs.colorado.edu/wiki/Collaborative_Diffusion>

Repenning, Alexander. “Collaborative Diffusion: Programming Antiobjects.” University of

 Colorado, Boulder. 2006.

 <http://www.cs.colorado.edu/~ralex/papers/PDF/OOPSLA06antiobjects.pdf

Wilensky, U. (2001). NetLogo Pac-Man model. http://ccl.northwestern.edu/netlogo/models/Pac

 Man. Center for Connected Learning and Computer-Based Modeling, Northwestern

 Institute on Complex Systems, Northwestern University, Evanston, IL.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected

 Learning and Computer-Based Modeling, Northwestern Institute on Complex Systems,

 Northwestern University, Evanston, IL.

